pcb
Home > Blog

Posts Tagged ‘ceramic PCB’

What is ceramic material for PCB?
Monday, September 9th, 2024

The top ten commonly used ceramic materials:
Common ceramic circuit board materials mainly include 96 aluminum oxide (Al2O3), 99 aluminum oxide (Al2O3), zirconium oxide (ZrO2), aluminum nitride (AlN), silicon carbide (SiC), silicon nitride (Si3N4), piezoelectric ceramics, diamond, sapphire, toughened ceramics (ZTA).

Ceramic PCB Material

Ceramic PCB Material

Uncommon ceramic circuit board materials
Uncommon ceramic circuit board materials mainly include silicon dioxide (SiO2), titanium zirconium oxide (ZrTiO4), boron nitride (BN), boron carbide (B4C), magnesium oxide (MgO), iron oxide (Fe2O3), cerium oxide (CeO2), silicon nitride (Si3N4), yttrium zirconium oxide (Y2O3-ZrO2), yttrium aluminum oxide (Y3Al5O12), titanium oxide (TiO2), silicon zirconium oxide (ZrSiO4), tungsten carbide (WC), titanium carbide (TiC), titanium nitride (TiN), silicon nitride (SiOxNy).

Alumina ceramic materials

Alumina ceramic materials

1). 99 alumina
99 alumina refers to alumina materials with a purity of 99% or higher. It is usually made of chemically pure alumina or high-purity alumina as raw materials, and is made through multiple processes such as high-temperature calcination, crushing, molding, and sintering. Compared with 96 alumina, 99 alumina has higher chemical purity, density and hardness, as well as better high-temperature stability and corrosion resistance.


99 alumina is widely used in electronics, machinery, chemical industry, aerospace and other fields. In the electronics field, 99 alumina is usually used to manufacture high-frequency electronic components, integrated circuit packaging, dielectrics and other devices; in the mechanical field, 99 alumina is mainly used to manufacture high-hardness ceramic tools, bearing balls, etc.; in the chemical field, 99 alumina can be used to manufacture catalysts and adsorbents; in the aerospace field, 99 alumina is often used to manufacture high-temperature structural parts, aircraft engine parts, etc.

2). 96 alumina
96 alumina, also known as industrial alumina or α-alumina, is a high-purity ceramic material. Its chemical formula is Al2O3, which belongs to oxide ceramics. 96 alumina is usually made of alumina powder through pressing, molding, sintering and other processes. The “96” here means that its aluminum oxide purity reaches more than 96%. 96 alumina has the characteristics of high hardness, high strength, high wear resistance, and good high temperature stability. It is widely used in the manufacture of ceramic products, refractory materials, abrasives, electronic devices and other fields.

Advantages of 99 alumina substrate:

High purity, usually reaching a purity level of 99.99%, excellent electrical properties, high dielectric constant and low dielectric loss.
Good high temperature stability, can work stably in high temperature environment, and can usually withstand temperatures up to 1700℃.
High mechanical strength, high strength, high hardness, not easy to be damaged, and can withstand greater force and pressure.
It has excellent corrosion resistance, is not corroded by most chemical substances, and is suitable for chemical media such as acids and alkalis.
It can be prepared into a thinner substrate, which is conducive to the preparation of microelectronic devices.

Advantages of 96 alumina substrate:
Cheaper than 99 alumina substrate, the cost is relatively low.
It is easier to process than 99 alumina substrate, and can be processed by cutting, drilling and other processing, which is convenient for preparing substrates of various shapes.
In some low-temperature and low-electric field strength applications, the dielectric constant and dielectric loss are lower than those of 99 alumina substrate, and it has better signal transmission performance.

Disadvantages:
Compared with 99 alumina substrate, 96 alumina substrate has lower purity, higher dielectric constant and dielectric loss.
It is prone to brittle fracture in high temperature environment.

Alumina ceramic application industry
99 alumina substrate: suitable for high-power LED, high-voltage integrated circuit, high-temperature sensor, high-frequency electronic components and other fields.
96 alumina substrate: suitable for low-power electronic components, sensors, capacitors, micro relays, microwave components and other fields.

Aluminum nitride ceramic material (AlN)

Aluminum nitride ceramic material (AlN)

Aluminum nitride ceramic is a high-performance ceramic material made of aluminum nitride powder sintered at high temperature. Its main component is aluminum nitride (AlN), which has the characteristics of high melting point (about 2800℃), hardness (9.0 to 9.5Mohs), strength and thermal conductivity. At the same time, it also has good insulation performance, chemical stability and high temperature resistance. Due to these characteristics, Sliton aluminum nitride ceramic circuit boards are widely used in microelectronics, optoelectronics, power electronics, aerospace and other fields.

Advantages

  1. High hardness: The hardness of aluminum nitride is close to that of diamond, which is more than 3 times that of traditional alumina. It can be used to make high-strength mechanical parts.
  2. High strength: Aluminum nitride has high strength, good wear resistance and corrosion resistance, and can be used to make high-load, high-wear and corrosion-resistant parts.
  3. High thermal conductivity: The thermal conductivity of aluminum nitride is very high, reaching 170-230W/(m·K), which is more than 4 times that of traditional aluminum oxide. It can be used to make high-power, high-frequency RF components.
  4. High insulation: The dielectric constant of aluminum nitride is low, about 1/3 of that of traditional aluminum oxide, and can be used to make high-frequency, high-precision microwave components.
  5. Anti-oxidation: Aluminum nitride has good anti-oxidation properties at high temperatures and can be used to make parts in high-temperature environments.

Application of aluminum nitride ceramics
Widely used in semiconductors, aerospace, electronics, military and other fields. For example, it is used to make high-frequency RF devices, microwave components, electronic ceramics, thermistors, high-temperature sensors, etc.

Zirconia ceramic material (ZrO2)

Zirconium oxide ceramic material is a ceramic material with high strength, high hardness, high temperature tolerance, corrosion resistance and good insulation performance. Its chemical formula is ZrO2, and it is usually stabilized to improve the stability and wear resistance of its lattice. Zirconia ceramic material has the characteristics of low thermal conductivity and high melting point, so it is widely used in industrial fields with strict requirements such as high temperature, high pressure, high speed and high precision, such as aerospace, electronics, medical and energy.
Advantages

  1. High hardness: The hardness of zirconia ceramics is very high, usually reaching HRA90 or above, even up to HRA95, which is more than 10 times that of steel.
  2. High strength: Zirconia ceramics have extremely high strength, which can reach 900MPa at room temperature, and can still maintain high strength at high temperature.
  3. Good wear resistance: Zirconia ceramics have high surface flatness and high hardness, so they have good wear resistance.
  4. Good corrosion resistance: Zirconia ceramics are chemically inert and not easily corroded by chemicals such as acids and alkalis, and can operate stably for a long time in harsh environments.
  5. Excellent insulation performance: Zirconia ceramics have excellent insulation performance and can be used for high-voltage insulation materials.
  6. Good high-temperature stability: Zirconia ceramics have extremely high melting points and high-temperature stability, and can be used for a long time in high-temperature environments.

Application of Zirconia Ceramics
Widely used in high-end manufacturing, electronics, aerospace, medical equipment, chemical industry and other fields, such as abrasives, high-temperature structures, pneumatic components, medical equipment, sensors, capacitors, etc.

Silicon carbide ceramic material (SiC)

Silicon carbide is a compound with the chemical formula SiC, which is composed of two elements: silicon and carbon. It is a ceramic material that is resistant to high temperature, corrosion, and extremely hard. It is also an industrial material widely used in extreme environments such as high temperature, high frequency, and high pressure. Silicon carbide has excellent mechanical, electromagnetic, and thermal properties, and is therefore widely used in semiconductors, disks, aerospace, and other fields. In addition, silicon carbide has good semiconductor properties and is also widely used in power electronics, optoelectronics, and other fields.
Advantages

  1. High hardness: The hardness of silicon carbide material is 5 times higher than that of steel and 3 times higher than that of aluminum.
  2. High strength: The strength of silicon carbide material is high, and the tensile strength can reach more than 400MPa.
  3. High temperature resistance: Silicon carbide material has a high melting point and can withstand high temperature thermal shock. The general use temperature is 1200℃-1600℃.
  4. Good oxidation resistance: Silicon carbide material can resist high temperature oxidation corrosion and can be used in air.
  5. Good wear resistance: Silicon carbide material has high hardness, low friction coefficient and good wear resistance.
  6. Good thermal conductivity: Silicon carbide material has excellent thermal conductivity, which is 2-3 times that of metal and can effectively dissipate heat.
  7. Good chemical stability: Silicon carbide material has good chemical stability and will not be corroded by acid, alkali, etc.

Silicon carbide ceramic PCB application
Widely used in high temperature, high pressure, high speed, high load, corrosion resistance and other fields, such as power, electronics, machinery, aviation, metallurgy and other industries.

Silicon nitride ceramic material (Si3N4)

Silicon nitride ceramic material is a high-temperature ceramic material based on nitrogen and silicon elements. It has excellent properties such as high strength, high hardness, high wear resistance, high temperature resistance, oxidation resistance, and corrosion resistance. Its chemical stability is extremely high and is not easily corroded by acids, alkalis, solvents, etc. The hardness of silicon nitride ceramic materials is comparable to that of diamond, or even higher, reaching about 24GPa. It is harder and less prone to wear than ordinary ceramic materials. At the same time, it has good insulation properties and thermal stability, and can work stably for a long time in high temperature environments.

Advantages of silicon nitride ceramic PCB materials

  1. High hardness: The hardness of silicon nitride ceramic materials is close to that of diamond, which can reach more than 30GPa.
  2. High strength: The bending strength of silicon nitride ceramic materials is high, which can reach more than 1000MPa.
  3. High wear resistance: Silicon nitride ceramic materials have good wear resistance and can be used to manufacture high-speed bearings and cutting tools, etc.
  4. High temperature resistance: Silicon nitride ceramic materials have high high temperature resistance and can be used in high temperature environments above 1000°C.
  5. Corrosion resistance: Silicon nitride ceramic materials have excellent corrosion resistance and can be used in some acidic and alkaline working environments.
  6. Lightweight: Silicon nitride ceramic materials are lighter than steel and can be used in lightweight design.

Silicon nitride ceramic PCB applications
Widely used in aerospace, optoelectronics, electronics, semiconductors, machinery and other fields.

Piezoelectric ceramic materials

Piezoelectric ceramic materials are ceramic materials with piezoelectric effect, which can deform under external electric field or mechanical stress, and generate electric charge when deformed. They are usually made of materials such as barium lead oxide (Pb(Zr,Ti)O3) or niobium lead oxide (Pb(Mg1/3Nb2/3)O3-PbTiO3) as the main components and sintered.

Advantages

  1. Piezoelectric effect: It can convert mechanical stress into electrical signals, or convert electrical signals into mechanical motion. This effect makes piezoelectric ceramic materials widely used in sensors, actuators, acoustic wave devices and other fields.
  2. Dielectric properties: With high dielectric constant and low dielectric loss, piezoelectric ceramic materials are used as capacitors, filters, etc. in electronic components.
  3. Mechanical properties: With high hardness, strength and wear resistance, piezoelectric ceramic materials are used in mechanical engineering.
  4. Thermal stability: With good thermal stability and high temperature resistance, it can work stably in high temperature environment.
    Piezoelectric ceramic PCB applications
    Widely used in sensors, actuators, acoustic wave devices, electronic components, mechanical engineering and other fields.

Diamond ceramic material

Diamond ceramic material is a new type of material made by sintering diamond powder and ceramic as raw materials at high temperature and high pressure. Because diamond has extremely high hardness, reaching Mohs hardness level 10, and has excellent wear resistance, corrosion resistance and high temperature oxidation resistance, diamond ceramic material has extremely high physical and chemical properties.

Advantages of diamond ceramic PCB material

  1. Extremely high hardness and strength, more wear-resistant, scratch-resistant and impact-resistant than ordinary ceramic materials;
  2. Excellent corrosion resistance, able to resist corrosive media such as strong acids and alkalis;
  3. Excellent high-temperature oxidation resistance, can be used for a long time at high temperature without damage;
  4. Excellent thermal conductivity and insulation performance;
  5. Easy to process into ceramic products of various shapes and sizes.

Application of diamond ceramic PCB
Diamond ceramic materials are widely used in high-end machinery, electronics, optics, medical and chemical fields, such as bearings, nozzles, cutting tools, hydraulic cylinders, electrical insulation parts, laser parts, etc.

Sapphire ceramic material

Sapphire ceramic material, also known as synthetic sapphire (Synthetic Sapphire), is a man-made single crystal material with excellent properties such as high hardness, high wear resistance and high corrosion resistance. The main component of sapphire ceramic material is aluminum oxide (Al2O3), which is prepared by melting or heat treatment at high temperature.

Advantages of sapphire ceramic material:

  1. High hardness: The hardness of sapphire ceramic material is second only to diamond, and it has high wear resistance.
  2. High corrosion resistance: Sapphire ceramic material has excellent corrosion resistance and can be used stably for a long time in harsh environments such as strong acid and strong alkali.
  3. High light transmittance: Sapphire ceramic material has high light transmittance and can be used in optics, laser and other fields.

You may also like

What Are the Benefits of Using Ceramic PCB?
Tuesday, August 13th, 2024

With the continuous improvement of the performance requirements of electronic equipment, such as high current, fast heat dissipation, high frequency, long life and a series of other requirements, the requirements for the circuit board carrying the functions of the equipment have become particularly harsh. The traditional FR4 pcb circuit board in the past has completely failed to meet the current use scenarios. It is found that the circuit board produced by adding the corresponding ceramic materials can meet the corresponding requirements when making the circuit board substrate. Since then, ceramic PCB came into being and quickly gained a decisive position in the market.

Why Use Ceramic PCB?

Ceramic PCB shows remarkable advantages in many application fields because of its unique physical and chemical properties. ‌

First of all, ceramic PCBs have excellent heat dissipation performance and low thermal expansion coefficient, which enables them to maintain stable performance in high temperature environment and effectively avoid equipment damage or performance degradation caused by temperature changes. Secondly, ceramic PCB has excellent insulation performance and high voltage resistance, which can guarantee personal safety and stable operation of equipment. In addition, the ceramic PCB has strong adhesion, and the bonding technology is adopted to ensure that the copper foil will not fall off, which improves the reliability of the product, especially in the application of high-frequency circuits. ‌

Ceramic PCB: What is it & Why should we use it?

The manufacturing process of ceramic PCB also has its own uniqueness. Usually, the bottom plate is formed by pressing ceramic powder, which ensures the flatness and surface smoothness of PCB, thus improving the quality of circuit board. Although the cost of ceramic PCB is usually higher than that of traditional materials such as FR-4, it is undoubtedly a better choice in applications requiring high performance and high reliability. ‌

To sum up, ceramic PCB is widely used in high-power power electronic modules, solar panel components, high-frequency switching power supplies, solid-state relays, automotive electronics, aerospace, military electronic products, high-power LED lighting products, communication antennas and other fields because of its excellent physical and chemical properties and high stability in high-frequency circuit applications.

What Are the Basic Components of Ceramic PCB?

The first is highly integrated circuit board, which has become an inevitable trend with the progress of electronic technology. Modern technology and electronic products integrate hundreds, thousands or even millions of transistors and resistors on a small silicon chip or integrated circuit (commonly known as IC) to form complex components.

These integrated circuits need a foundation for building tiny electronic materials and connections, usually called substrates. It also needs a structure to isolate the circuit from the external environment and turn it into a compact and solid unit, which is called packaging.

Integrated circuits need substrates and packages to maintain their reliability. Integrated circuits need insulating materials, and these two materials are born for this purpose. These packages will then be mounted on the printed circuit board.

Ceramics are famous for their insulating properties. The protective performance of this advanced ceramic material is an important factor for its use as substrate and packaging. This is why ceramic printed circuit boards or PCBs stand out from other similar products.

What are the Materials Used in Ceramic Circuit Board?

There are many kinds of materials for making ceramic PCB. When choosing ceramic materials, two basic characteristics that should be paid attention to are thermal conductivity and thermal expansion coefficient (CTE) of PCB.

Alumina (Al2O3), aluminum nitride (AlN), beryllium oxide (BeO), silicon carbide (SiC) and boron nitride (BN) are commonly used materials in ceramic PCB.

Alumina (Al2O3)

Alumina is an inorganic compound, also known as bauxite. It is an advanced material made of aluminum and oxygen. It is usually white, but it varies according to purity. The color can be pink to almost brown. This compound is tasteless and crystalline powder, but it is insoluble in water.

Among all oxide ceramics, alumina is the hardest and strongest. Because the content of alumina is higher than 95%, it is an excellent electrical insulator with a resistivity as high as about 1× 1014 Ω cm. Common purity ranges from 94% to 99%. The required color, hardness, size and shape should be easy to achieve. Because the composition can be changed, it is considered to be beneficial to engineering production.

This industrial oxide ceramic has excellent thermal stability and corrosion stability, excellent mechanical strength and dielectric strength, and can even form an airtight seal. The common 96% alumina has a thermal conductivity of 25.0 W/(m k) and a CTE of 4.5 to 10.9 x 10-6/k.. Besides being affordable and cost-effective, it has all these advantages.

It is the most commonly used substance in ceramics because it has many applications in the electronic field, including substrates and packaging. This is the preferred material when the application does not require the highest level of thermal performance. It is one of the most advanced ceramic materials with the most in-depth research and comprehensive characteristics.

Aluminum nitride (AIN)

Aluminum nitride (AIN) is a non-oxide semiconductor technology-grade ceramic material. The structure of this compound is hexagonal crystal, which is blue and white in pure state. Aluminum nitride is a synthetic ceramic compound, which is usually white or gray.

Ceramic PCB: What is it & Why should we use it?

One of the best ceramic substrate materials at present is aluminum nitride (AlN). Its resistivity ranges from 10 to 1210ω-m, and its thermal conductivity is 80 to 200W/(m k), even as high as 300W/(m k). Based on these characteristics, it is undoubtedly one of the most attractive PCB substrate materials and one of the best choices.

It has electrical insulation and a low coefficient of thermal expansion (CTE) of 4 to 6× 10-6k1 (between 20 and 1000°C), which is very close to the silicon wafer. The value of this compound is much higher than that of alumina, but the cost is also higher. It is most suitable for use in high current and high temperature environment.

Beryllium oxide (BeO)

Beryllium oxide (BeO) or Beryllium oxide is also called dextran or glucose oxide in history. As the name implies, it comes from beryl or mineral beryl. It is a solid crystalline inorganic compound with white color.

In addition to good electrical insulation, its thermal conductivity is higher than that of any other nonmetal [(209 to 330 W/(m k)], and even exceeds that of some metals except diamond. There are rigid bonds between the atoms of beryllium oxide, just like diamonds. It transfers heat in the form of vibration through these strong bonds, so the energy loss is minimal.

This refractory compound has a melting point of 2506.85 °C to 2575 °C, a boiling point of 3905 °C and a CTE of 7.4 to 8.9 x 10-6/k. Beryllium oxide has these excellent characteristics, so it is widely used in electronic industry and is a valuable resource. Because of its high melting point, excellent thermal conductivity and good resistance, other industries also benefit from it.

Beryllium oxide has shown excellent chemical and thermal stability in challenging conditions and harsh environments for more than 60 years. BeO can be used to provide air or liquid cooling in applications where PCB is exposed to high temperature or high-density PCB with limited space. ‌

What are the Advantages of Ceramic PCB over Traditional PCB?

The use of ceramic printed circuit boards has several advantages, which help to significantly reduce the size and weight of the final product while improving energy efficiency. High quality surface smoothness (due to its flatness), high temperature resistance and low dielectric constant are their other significant advantages. In addition, ceramic plates are durable and wear-resistant, which means that they can be used in areas with high mechanical stress.

Because ceramic substrates are cleaner than FR-4 boards, ceramic PCBs can accommodate high component density on a single circuit board, which means that they can accommodate smaller components while still maintaining the same mass and occupying space.

The high temperature resistance of ceramic board is several times higher than that of FR4, and the thermal deformation temperature of ceramic board is much higher than that of traditional FR4, which makes the circuit board have better performance under extreme temperature conditions, thus prolonging the service life of the circuit board.

Ceramic PCB is more resistant to moisture in the air than FR4 board.

Ceramic PCB is made of ceramics, which is more durable and stronger than traditional FR4.

Ceramic board has higher density than traditional PCB, which can ensure high signal integrity. In addition, these boards are faster and more reliable than traditional boards.

Ceramic boards have high thermal resistance due to low thermal conductivity, so ceramic PCB has another advantage of fire prevention, which can make them a good choice for products that need to meet certain flammability and heat resistance criteria. Because a thin layer of ceramic fiber on the surface of PCBA can prevent heat from flowing into the circuit board, and at the same time, it can protect the conductive traces from cracking when exposed to excessive heat.

What are the Application of Ceramic PCB?

1. High power device

2. On-board chip module

3. Proximity sensor

4. Solid State Relay (SSR)

5. Solar panel array

6. Transmission/reception module

7. Multilayer Interconnect Board

8. Solar cells

9. Light emitting diodes

10. Automobile lighting system

Ceramic PCB: What is it & Why should we use it?

As a high-performance electronic component, ceramic PCB‌ is playing a vital role in many fields because of its unique characteristics. This kind of printed circuit board is becoming more and more popular for various reasons. The most important factor to consider when choosing a PCB manufacturer is quality and experience. Through meticulous manufacturing technology and firm commitment to quality, BEST Technology strives to provide ceramic PCBs that can stand the test of time and meet the needs of the continuous development of modern technology. Contact us for more information!

You may also like

What Are the Different Types of Ceramic PCBs?
Saturday, July 6th, 2024

Ceramic PCBs are a special breed of printed circuit boards known for their exceptional thermal resistance and durability. These PCBs are used in industries where high performance is critical, such as aerospace, automotive, medical devices, and power electronics. Nowadays, the most common types of ceramic PCB are thick film, DCB, DPC, AMB, HTCC, LTCC and thin film. In this article, we will introduce each of them in details.

What are the different types of ceramic pcbs?

Thick Film Ceramic PCB

Thick film technology is a process by using screen printing conductor paste and directly deposit slurry (conductor) on the ceramic substrate. Then sintering it under high temperature to form conductive circuit traces and electrodes, which is suitable for most ceramic substrates.

After the material is sintered at high temperature, a strong adhesion film will be formed on the ceramic circuit board, repeat this step for many times, a multi-layer circuit is generated.

You can print resistor or capacitor on the surface to get a interconnected structure. At Best Technology, we can make all the resistors with the same value, or different value for different resistor on the same board.

What are the different types of ceramic pcbs?

Thick film ceramic PCB has advantages on the simple manufacturing process, but it has some drawbacks that can’t be ignored:

  • Limited by the conductive paste and screen size
  • Line width less than 100um is difficult to achieved
  • Three-dimensional patterns are not available
  • Not suitable for fine-trace project

DBC / DCB Ceramic PCB

Direct Bonded Copper (DBC) or Direct Copper Bonded (DCB) ceramic PCBs are known for their excellent thermal conductivity. They are made by bonding a layer of copper directly onto a ceramic substrate, typically aluminum oxide or aluminum nitride. Due to the DBC technology is directly bond copper on the ceramic substrate, it can achieve thicker copper thickness to 300um. So, it is very suitable for high power applications.

The basic chemistry principle is to introduce an appropriate amount of oxygen between copper and ceramics before or during the application process. Copper and oxygen will form Cu-O eutectic liquid under 1065℃~1083℃. This is an important element in the manufacturing. DBC ceramic circuit board uses this eutectic solution to chemically react with the ceramic substrate to form CuAlO2 or CuAl2O4, achieving the combination between substrate and copper foil.

What are the different types of ceramic pcbs?

However, it is easy to generate micro-porosity between Al2O3 and Copper during the copper bonded process, and it doesn’t have a good solution by far. That is why the yield of DBC ceramic PCB is not good than DPC.

DPC (Direct Plated Copper Ceramic PCB)

DPC ceramic PCB utilizes direct copper plating technology, deposit copper foil on the alumina oxide (Al2O3) substrate. It is the most commonly used ceramic PCB in recent years. The circuit generated process is: pre-treatment – sputtering – exposure – develop – etch – strip – electroplating.

AMB (Active Metal Brazed Ceramic PCB)

AMB ceramic copper clad plate adopts the active brazing process, and the copper layer bonding force is higher than that of DPC, which is around 18n/mm – 21n/mm. AMB ceramic copper clad plate usually has a high binding force, usually makes thicker copper, between 100um and 800um. The AMB ceramic PCB generally rarely design traces or holes, even if there is a trace is very simple, the spacing is relatively wide.

HTCC (High Temperature Co-fired Ceramic PCB)

HTCC is a relatively early development technology, but due to the high sintering temperature (1300~1600℃), the choice of electrode materials is limited. Meanwhile, its cost is more expensive, these promotes the development of HTCC is relatively slow.

What are the different types of ceramic pcbs?

LTCC (Low Temperature Co-fired Ceramic PCB)

Although LTCC reduces the co-firing temperature to about 850 ° C, the disadvantage is that the dimensional accuracy and product strength are not easy to control.

Thin Film Ceramic Circuit Board

The thin film ceramic PCB is to deposit a metal layer directly on the surface of substrate by sputtering process. Through lithography, development, etching and other processes, the metal layer can also be graphed into a circuit pattern. Due to the low deposition speed of sputtering coating (generally less than 1ÎŒm/h), thin film substrate surface metal layer thickness is small and can prepare high pattern accuracy (line width/line space less than 10ÎŒm).

What are the different types of ceramic pcbs?

Common Ceramic Substrates

What are the different types of ceramic pcbs?

Best Technology is a leading ceramic PCB manufacturer in Asia, our core members has over 20 years manufacturing experience in ceramic PCB fabricating. “High mixed, low volume, high quality, fast delivery” is our advantages and we always try our best to do that, make ourselves better and better. If you are interested in it, feel free to contact us, we are always online.

You may also like

Leading Ceramic PCB Board Manufacturer – Best Technology
Friday, July 5th, 2024

With the gradual deepening of electronic technology in various application fields, the highly integrated circuit board has become an inevitable trend. Under this situation, the disadvantage of traditional circuit board FR-4 and CIM-3 in TC (thermal conductivity) has become a drawback to delay the development of electronic technology. Though the metal core PCBs are known for their good thermal management, they hard to meet the fast heat dissipation and miniaturization of the devices at the same time. This is why ceramic PCB stands out.

What is Ceramic PCB?

A ceramic PCB is a type of PCB made from ceramic materials, such as alumina (Al2O3), ALN (aluminum nitride), or Beryllium Oxide (BeO). These materials are prepared by using thermal conductive ceramic powder and organic adhesive under the condition of below 250℃. Ceramic powders are not easy to made, especially for aluminum nitride powder, this is one of reasons that why ALN ceramic PCB is more expensive.

There are some different methods to make ceramic PCBs, commonly in the market are thick film, DBC, DPC and thin film technology. Different types of ceramic circuit boards have its unique characteristics. May you heard about HTCC, LTCC and AMB, they are also the ways to make ceramic PCBs, but there just a few manufacturers can make. Here is a HTCC ceramic PCB that we made.

HTCC ceramic PCB

Why Ceramic PCBs are popular used?

Different from the traditional FR-4 PCB (wave fiber), ceramic PCBs have good high-frequency properties, electrical properties that organic materials can’t achieved. It is a new generation of large-scale integrated circuits and power electronics module ideal packaging materials. The main advantages of ceramic circuit board including:

  • Higher thermal conductivity
  • More matched thermal expansion coefficient (CTE)
  • Lower resistance
  • Good weldability and can be used in high temperature
  • Good insulation
  • Lower high-frequency loss
  • High density assembly available
  • No organic ingredients, resistance to cosmic rays, high reliability in aerospace
  • No oxide layer in copper layer, so it can be used for a long time in a reducing atmosphere

Who is the Best Ceramic PCB Manufacturer?

There are so many PCB manufacturers in the domestic and aboard, but reliable ceramic PCB vendors with good quality and reasonable price are very few. If you are looking for an experienced one, then keep the change. We’re the best option! Best Technology offers ceramic PCBs for our customers more than 100k every year, and we are high mixed from thick film ceramic PCB, DPC ceramic PCB, DBC/DCB ceramic PCB to AMB. Your PCBs need to use in automotives? Don’t worry, we gained IATF16949 and ISO13485 certifications, and all the manufacturing processes are strictly followed by ISO9001 quality control system. We welcome all the questions and inquiries from everyone.

Here is our ceramic PCB manufacturing capability for your reference.

Ceramic PCB Manufacturing Capability
No. ItemGeneral ParameterSpecial Process
1SubstrateHigh insulation, chemical corrosion resistance, high-temperature resistanceAl2O3Glass, quartz, sapphire, 99% , 92% Al2O3 (black)
2Excellent thermal conductivity, low thermal expansion coefficient, and high-temperature resistanceAIN
3Insulation performance and high-temperature stabilityZTA
4High strength, high hardness, high thermal conductivity, and low dielectric lossSi3N4
5ConductorTungstenLTCC/HTCC)、Au、Au&Pd、Au&Pb、Ag、Ag&Pd、Ag&Pb
6Layer CountDPCSingle – Double sided 
7DBCSingle – Double sided 
8AMBSingle – Double sided 
9Thick filmSingle – Double sided, 4L 
10LTCCSingle – Double sided, 4L, 6L6L – 14L
11HTCCSingle – Double sided, 4L, 6L 
12Copper ThicknessInner layer/ 
13Outer layerHoz-3oz (DPC), 3oz-12oz(DBC/AMB) 
14DimensionMax. dimension130*180Larger dimension available (pass evaluation)
15Min. dimension2*2Shipped in panel
16Substrate thicknessAl2O3/AIN 0.38. 0.635, 1.0mm, Si3N4 0.25、0.32mm>1.5
17Surface Treatment
(thickness)
OSP0.2-0.5um/
18ENIG1-3u”Au120-320u”Ni/
19Immersion silver6-12u”/
20Immersion tin≄1um/
21ENEPIGAu 2u”, Pd 1U”, Ni 100u”/
22Hard gold5-30u”AuïŒ‰ă€120-200u”Ni/
23DrillMin. PTH0.05MM/
24Min. NPTH0.05MM/
25Max. aspect ratio (PTH PCB)5:1/
26NTPH tolerance±0.05/
27PTH tolerance±0.05/
28Line width/ Line spacingInner layerLine width≄0.1mm; Line space≄0.1mm0.076/0.076mm
29Outer layer1OZ; Line width≄0.12mm; Line space≄0.12mm0.1/0.1mm
302OZLine width≄0.2mm; Line space≄0.2mm0.15/0.15mm
313OZLine width≄0.25mm; Line space≄0.25mm0.2/0.2mm
324OZLine width≄0.35mm; Line space≄0.35mm0.3/0.3mm
335OZLine width≄0.45mm; Line space≄0.45mm0.4/0.4mm
346OZLine width≄0.55mm; Line space≄0.55mm0.5/0.5mm
35Thick film; Line width≄0.1mm; Line space≄0.1mm0.076/0.076mm
36Line width tolerance±20%/
37Solder Mask (SM) /SilkscreenConductorGlass glaze, medium, solder mask ink/
38SM colorWhite, black, greenMixed color
39Silkscreen colorWhite, blackMixed color
40Silkscreen height, widthLine width≄0.13mm; Height≄0.8mm/
41SM thickness≄20um/

You may also like

Can I Design Via Holes in Thick Film Ceramic Boards?
Tuesday, April 18th, 2023

May some engineers or designers who be interested in thick film ceramic circuit are curious about can thick film ceramic boards design with via holes like FR4 PCB? Herein, we will explore the feasibility of using thick film ceramic boards for via holes, including the materials and processes involved, as well as the advantages of this approach.

What is thick film ceramic board?

The “Thick Film” refers to the thickness of conductor layer on a Ceramic PCB. Normally the thickness will be at least 10um, around 10~13um, which is thicker than spurting technology in Thin Film Ceramic PCB. And of course thickness is less than DCB Ceramic board or FR4 board.

Thick film ceramic circuit enables to put resistor, electric capacitor, conductor, semi-conductor, and interchangeable conductor on ceramic board, after manufacturing steps of printing and high temperature sintering. The more important thing is by using thick film technology, we can make all the resistors with the same value, or different value for different resistor on the same board.

Materials and processes for via holes

In general, thick film ceramic circuit is not suitable for designing via holes. Because the characteristics of thick film ceramic board mainly depends on the insulation properties of its ceramic substrate, rather than conductive properties. The conductivity of thick film ceramic plate is not good than Metal Core PCB, or even we can say it has a very poor conductivity, usually can’t meet the requirements of the via hole.

But, designing via holes in thick film ceramics is available in Best Technology. Generally speaking, the fabrication of via holes in thick film ceramic boards typically involves several key materials and processes.

From the designer’s perspective, a conductive material is used to create a continuous conductive path from one side of the ceramic board to the other. Common conductive materials include gold paste, silver paste, and copper paste. These materials are usually screen printed onto the ceramic board in the desired pattern, and then fired at high temperatures to achieve sintering and form a conductive layer.

Once the conductive layer is formed, the via holes are created by drilling or punching small holes through the ceramic board at the desired locations. These holes are then filled with a conductive material, such as silver paste or copper paste, to establish electrical connections between the different layers of the circuit.

Finally, the via holes are fired again at high temperatures to achieve sintering and ensure good adhesion and electrical performance.

Advantages of Via Holes in Thick Film Ceramic Boards

These via holes offer several advantages in the design and fabrication of thick film ceramic boards, including as following:

  • Electrical connectivity

Via holes provide electrical connectivity between different layers of a thick film ceramic board. They allow for the interconnection of different circuitry or conductive layers, enabling the flow of electrical signals or power between different parts of the board. This allows for complex and multi-layered circuit designs, which can be highly beneficial in applications that require intricate circuitry or high-density interconnects.

  • Space-saving

Via holes can provide a means of vertical interconnection, allowing for more efficient use of board real estate. Instead of routing traces or conductors on the surface of the board, which can take up valuable space, via holes can be used to route connections through the board, freeing up surface area for other components or functions. This is especially advantageous in compact or miniaturized electronic devices where space is limited.

  • Thermal management

Via holes can aid in thermal management in thick film ceramics. They can be used to transfer heat from one layer of the board to another, helping to dissipate heat generated by components or circuits. This can be particularly important in high-power or high-heat applications, where efficient thermal management is crucial for preventing overheating and ensuring reliable performance.

  • Mechanical stability

Via holes provide additional support and reinforcement to the board, reducing the risk of warping, bending, or cracking. Via holes can also help improve the overall mechanical integrity of the board by reducing stress concentration points and enhancing its structural rigidity.

  • Design flexibility

Via holes offer design flexibility in thick film ceramic boards. They can be designed and placed according to the specific requirements of the circuit or system, allowing for customized and optimized designs. Via holes can be used to route traces, create vias for component mounting, or provide grounding or shielding, among other functionalities. This flexibility in design allows for more efficient and effective circuit layouts, which can lead to improved performance and reliability.

As previously mentioned, designing via holes in thick film ceramic boards offers various benefits. However, when it comes to choosing the appropriate paste for via holes, silver paste is often recommended to our customers. But why is that? Can I use gold or copper? In our upcoming article, we will delve into the reasons behind this recommendation and provide you with valuable insights. Stay tuned to uncover the answers!

You may also like

“TEN Q & A” about Ceramic Printed Circuit Board
Monday, February 27th, 2023

Q1: What do the abbreviations DBC and AMB stand for?

A: DBC means “Direct Bond Copper” while full name of AMB is “Active Metal Brazed”. Both abbreviations refer to bonding technology of attaching a relatively thick copper (generally more than 0.2mm) on the ceramic substrates. These two technologies can be used to fabricate metalized ceramic substrates.

Q2: What is the mainly difference between DBC and AMB?

A: The mainly difference is AMB need to braze the copper to a ceramic board by active metal while DBC can directly connect the copper and substrate without any additional materials.

Q3: Which kind of ceramics are suitable for DBC and AMB?

A: DBC technology is suitable for oxide ceramics such as Al2O3 and ZTA. Non-oxide ceramics must be oxidized before they can be bonded to copper by DBC technology. ALN can be made into DBC or AMB ceramics, but Si3N4 only can be used as AMB substrates.

Q4: What is the function of metalized ceramic PCB?

The metallized ceramic substrate needs to carrier and interconnect multiple power semiconductor devices. The resulting electronic components are called power modules or multi-chip packages, most commonly LED packages or semiconductor packages. 

Q5: Does AMB can be used with oxide ceramics?

A: Yes, but the effective of DBC technology is better and the cost is relatively lower.

Q6: What is the most important performance need to be considered when design a new ceramic PCB?

A: It depends on the end application of product will be used in. Ceramics are chemically inert substances that are resistant to corrosion, moisture, and high temperatures, making them preferable to organic dielectrics that degrade in corrosive environments. Electrical, thermal and mechanical properties are equally important in the design of a new substrate. Dielectric strength is an important factor to meet the isolation requirements, which should be set according to the standards, specifications and regulations of the target application. Low thermal conductivity is not conducive to the heat transfer between the chip and the surrounding environment. The bending strength and fracture toughness play an important role in prolonging the service life of the substrate under thermal-mechanical stress.

Q7: How to choose a suitable substrate?

A: First, the heat dissipation of power semiconductor devices should be understood. Then, based on the chip and the ambient temperature, the required substrate thermal resistance is calculated. However, the combination of copper and ceramic may not always achieve the desired thermal resistance.  For one thing, the isolation voltage determines the minimum thickness of the ceramic. On the other hand, the thickness ratio of copper to ceramic has a great effect on the reliability. Finally, the set of applicable standards will be very limited.

Q8: Are DBC and AMB substrates suitable for high voltage applications?

A: The DBC substrate is ideal for applications with operating voltages up to 1.7 kV.  For higher operating voltages, a thicker ceramic layer is required to meet the relevant isolation requirements.  Silicon nitride (ALN) is often used because its high thermal conductivity offsets the increased thickness. In addition, resistance to partial discharge is particularly important in this application. Thus, AMB is superior to DBC techniques for this purpose unless the interfacial gap between copper and ceramics can be eliminated.

Q9: Are DBC and AMB substrates copper plated only on both sides?

A: No, both of two technologies can plate copper only on one side. But this is not a standard combination of materials, however, because the resulting flatness of the substrate is critical in multiple applications.

Q10: What are the shapes of substrates?

A: The rectangle is the cheapest and most common shape to produce. Other shapes are also available, but may incur additional production costs.

You may also like

What is the DBC Ceramic Copper Oxidation Technology
Monday, February 20th, 2023

DBC (Direct Bond Copper) ceramic PCB also known as DCB ceramic, which is widely used in various type of high-power semiconductor, especially in IGBT package material by means of its excellent electricity and thermal conductivity of copper and the advantages of high mechanical strength and low dielectric loss of ceramics. DBC technology uses the oxygen-containing eutectic solution of copper to directly apply it to the ceramic. The key factor in the preparation process is the introduction of oxygen element, so the copper foil needs to be pre-oxidized in advance. Do you want to know what is the copper foil oxidation technology during the DBC ceramics manufacturing? Hereinbelow, we will introduce the oxidation process for you.

Oxidation technology of copper foil

Copper oxidation is divided into Wet Air Oxidation (including soaking oxidation and spraying oxidation) and Dry Oxidation.  Both oxidation methods can form CuO or Cu2O on the surface of copper foil.

  • Wet Air Oxidation (WAO)

i. Soaking oxidation

First, the copper is pickled with 3% dilute sulfuric acid, and then washed by the spray washing machine after overflow. Next, sent the copper into the mixed solution of potassium permanganate and copper sulfate (the concentration of potassium permanganate is about 31.6mg/L and the copper sulfate is about 95.4mg/L) for soaking and oxidation.  The oxidized copper is then washed with water and three-stage countercurrent washing, and then slowly pulled for dehydration and drying (the temperature is about 100℃) to complete soaking and oxidation.

ii. Spraying oxidation

Spraying oxidation is a kind of WAO, only the oxidation method become spraying. Spray oxidation is to spray copper with mixed solution of manganese nitrate and copper nitrate (concentration of about 3%) after pickling and washing.  The sprayed copper is dried directly in the tunnel kiln (the temperature is about 200℃).  In the drying process of tunnel kiln, the manganese nitrate and copper nitrate sprayed on the copper sheet are decomposed into copper oxide and manganese oxide.  The ratio of soaking oxidation and spraying oxidation treatment of copper sheet is about 5:5.

  • Dry Oxidation

Dry oxidation is very easy to process, put the copper into oxidation oven firstly, then heating up to 600~800oC for oxidizing around 30mins and then subjected to air cooling annealing.

Wet Air Oxidation VS Dry Oxidation

At present, the existing industry is widely used to finish the high-temperature annealing oxidation of copper then sintering with ceramic substrate, that is dry oxidation.  But this high temperature annealing, oxidation in one way has some drawbacks as following:

  1. Uneven oxidation. It will directly cause sintering defects during sintering, and the peeling strength will change greatly.
  2. Leaving conveyor belt marks.  Because the high temperature and oxidation process is transported by the conveyor belt, the existence of the conveyor belt mesh will affect the temperature distribution of the entire copper is not uniform, leaving marks/traces of the conveyor belt.  The result of sintering is to leave the corresponding trace on the bonding surface of CuAl2O3.
  3. High temperature annealing and oxidation will accompany the grain growth of copper. In the subsequent sintering process, the grain will continue to grow, which brings adverse effects on the mechanical properties and surface treatment of copper.  The copper surface grain produced by wet oxidation is fine, which is conducive to improving the mechanical properties of copper and eliminating the traces of conveyor belt. The main difference between wet oxidation and dry oxidation is shown in the bending resistance, heat resistance cycle performance and peeling strength, and these three indicators are significantly better than dry oxidation. Wet oxidation products can better meet the requirements of bending strength and heat resistance cycle performance.

So, this is the end of this post, Best Technology specialized in fabricating ceramic PCB (including DBC, DPC, AMB, HTCC and LTCC technology) for more than 16 years, we have rich engineering team and professional sales team can provide one-stop service for you. Welcome to contact us if you have any inquiries about ceramic PCB.

You may also like

Suitable Choice of Ceramic Substrate for Your Application
Wednesday, December 7th, 2022

With the rapid development of ceramic industry, Ceramic Circuit Board is widely used in semi-conductors and electronic packages fields because it provides an excellent electric conductivity, low thermal expansion and good insulation properties over standard FR4 based PCBs. As you can see from our website: https://www.bestpcbs.com/products/ceramic-substrate.htm, there are various kinds of ceramic substrate materials in the market, different materials have different functions and properties. Here we illustrated the different kinds of materials in the market as below for you to choose which one is ideal for your designs when needs come out.

Common ceramic substrate materials

Nowadays, the most commonly material in the market is oxidation material, it always used in automobile products as its wear resistance and good strength.

Besides, there are some nitrides and silicious can be used in high power products.

For a quick look, here I listed as following:

  • Alumina Oxide (Al2O3)
  • Alumina Nitride (ALN)
  • Beryllium Oxide (BeO)
  • Silicon Nitride (Si3N4)
  • Zirconium Oxide (ZrO2)
  • Silicon Carbide (SiC)

Characteristics of different substrate materials

Alumina Oxide (Al2O3)

Alumina substrate characterize as a pure white substrate and the most commonly used ceramic substrate material in the electronics industry because of its high strength and chemical stability compared to most other oxide ceramics in terms of mechanical, thermal and electrical properties, and the richful source of raw materials is suitable for a variety of technical manufacturing and different shapes. The most commonly used Alumina Oxide are 96% alumina and 99.6% alumina.

  • 96% alumina can be used to fabricate Thick Film Ceramic Circuits as it has excellent electrical insulation, mechanical strength, good thermal conductivity, chemical durability and dimensional stability. The surface roughness is generally 0.2~0.6ÎŒm, and the maximum using temperature of the substrate can reach 1600℃
  • 99.6% alumina is the mainstay of most Thin-film electronic substrate applications, commonly used in circuit generation for sputtering, evaporation and chemical vapor deposition of metals. 99.6% alumina has higher purity, smaller grain size, and excellent surface smoothness than 96% alumina (the surface roughness is generally 0.08~0.1ÎŒm), and it can withstand maximum 1700°C temperature when applied in applications.

Alumina Nitride (ALN)

Currently, Alumina Nitride won the high attention of the public by means of two key excellent properties: one is high thermal conductivity. Alumina nitride offers a big increasing in thermal conductivity (170Wm.k), which is approximately 100-200 times than FR4 substrates did, while alumina oxide only offers 24W/m.K.

Another characteristic is silicon-matched expansion coefficient of 4.7ppm/°C 20~300°C, this makes it suitable for used in extremely harsh environments likely in high temperatures. The disadvantage is that even an extra thin oxidation will affect the thermal conductivity. Only by strictly controlling the material and process, can aluminum nitride substrate be produced with good consistency. That’s why the alumina nitride is expansive than alumina oxide.

By visually, alumina nitride has an off-white color, that give us a chance to distinguish it with alumina oxide easily.

Beryllium Oxide (BeO)

Beryllium Oxide has a high thermal conductivity than alumina, therefore, it almost used where high thermal conductivity required.  But when the temperature exceeds 300°C, it drops quickly. It is not as widely used as alumina oxide or aluminum nitride, the most important thing is that its toxicity limits its development.

Silicon Nitride (Si3N4)

Silicon Nitride is a material with high fracture toughness and strong heat resistance are often used as alternative materials for modules in recent years. With strong mechanical, high temperature resistance, corrosion resistance and wear resistance, it is widely used in automotive shock absorber, engine, especially automotive IGBT products, as well as traffic track, aerospace and other fields.

Zirconium Oxide (ZrO2)

Zirconium Oxide is popular as its exceptional strength, toughness, biocompatibility, high fatigue and wear resistance (15times of alumina oxide) render it optimal for dental applications.

Silicon Carbide (SiC)

The essence of silicon carbide ceramic substrate is a silicon material, which determines its high current density characteristics due to its superior thermal conductivity.

In the meantime, the higher band gap width determines the higher breakdown field and higher operating temperature of silicon carbide (SiC) ceramic circuit board. 

The core advantages of silicon carbide are high temperature resistance, high pressure resistance, wear resistance, low loss and high frequency work.  Therefore, it is used for products with high heat dissipation, high thermal conductivity, large current, large voltage and high frequency operation.

Send us inquiry for fabrication

At present, you should have a brief acknowledge about different ceramic substrate materials and their characteristics, and you should be able to decide which materials is most suitable for you. If you still have some concerns or different opinions about substrate for Ceramic pcb, welcome to contact us, Best Tech will offer you free advice and technical support for ceramic substrate choice.

You may also like

What are the Factors Affecting the Thermal Conductivity of AlN Ceramic Substrate?
Tuesday, May 31st, 2022

The Introduction of AlN Ceramic

With hexagonal wurtzite structure and no other homomorphic isomers, AlN, aluminum nitride, is a structurally stable covalent bond compound, whose crystal structure is AlN4 tetrahedron formed by the dismutation of aluminum atom and adjacent nitrogen atom. And its space group is P63mc, belonging to hexagonal system.

The Features of AlN Ceramic

  1. High thermal conductivity, which is 5 to 10 times than that of aluminum oxide ceramic.
  2. Coefficient of thermal expansion (4.3*10-6/℃) matches the semiconductor silicon material (3.5-4.0*10-6/℃).
  3. Great mechanical properties.
  4. Excellent electrical performance, with high insulation resistance and low dielectric loss.
  5. Multi-layer wiring can be carried out to achieve high density and miniaturization of packaging.
  6. Non-toxic, conducive to environmental protection.
Ceramic PCB

Factors Impacting on the Thermal Conductivity of AlN Ceramic

At 300K, the theoretical thermal conductivity of AlN single crystal material is as high as 319 W/(m·K). But in the actual production process, its thermal conductivity will still be affected, which is often lower than the theoretical value due to the influence of various factors such as the purity and internal defects (dislocations, pores, impurities, lattice distortion) of material, grain orientation and sintering process.

Effect of Microstructure on Thermal Conductivity

The heat conduction mechanism of single crystal AlN is phonon heat transfer, hence the thermal conductivity of AlN may be mainly influenced by the scattering control of grain boundary, interface, second phase, defect, electron and phonon itself. In accordance with the solid lattice vibration theory, the relation between phonon scattering and thermal conductivity “λ” is as follows: λ= L / 3CV.

In the formula, C is the heat capacity; V represents the average velocity of phonons; and L stands for the mean free path. And it can be seen from the equation that the thermal conductivity (λ) of AlN has direct ratio with the mean free path (L), for which the larger “L” is, the higher the thermal conductivity is. From the perspective of microstructure, the scattering can be caused by the interaction between phonons and phonons, phonons and impurities, and phonons and grain boundary.  It will affect the mean free path of phonons, and thus impact on the thermal conductivity.

It can be learnt from above that the microstructure of AlN has a great influence on its thermal conductivity. Therefore, it is necessary to make AlN crystals with fewer defects and impurities in order to obtain AlN ceramics with high thermal conductivity.

Effect of Oxygen Impurities Content on Thermal Conductivity

There are studies show that AlN has a strong affinity with oxygen so that it is easy to be oxidized, leading to the formation of aluminum oxide film on its surface. Owing to the dissolution of oxygen atoms in Al2O3, the nitrogen in AlN is replaced, resulting in aluminum void and oxygen defect. In this way, it will bring about the increase phonon scattering and decrease of mean free path hence the thermal conductivity will be reduced.

Oxygen Content in AlN (wt%)Thermal Conductivity (W/m·K)
0.31130
0.24146
0.19165
0.13171
0.12185

So, it can be concluded that the types of defects in AlN lattice are related to the concentration of oxygen atoms.

  • When the oxygen concentration is lower than 0.75%, oxygen atoms evenly distributed in the AlN lattice, replacing the position of nitrogen atoms. And then the aluminum void is accompanied by it.
  • When the oxygen concentration is not less than 0.75%, the position of Al in aluminum nitride lattice will have a change. Then the aluminum void will disappear, causing octahedral defects.
  • When the oxygen concentration is higher, the lattice will produce extension defects such as polytype, inversion domain and oxygen-containing stacking fault. Moreover, based on thermodynamics, it is found that the amount of oxygen in AlN lattice is under the influence of Gibbs free energy (ΔG°). The larger the ΔG° is, the less oxygen is in the lattice, hence there will be a higher thermal conductivity.

Therefore, the thermal conductivity of aluminum nitride is seriously affected by the existence of oxygen impurities, which is a key point resulting in the decrease of thermal conductivity.

Thermal Conductivity can be Enhanced by Suitable Sintering Aids

In order to improve the thermal conductivity of AlN, the required sintering aids need to be added to lower sintering temperature and remove oxygen in lattice.

As matters stand, the addition of multiple composite sintering additives is followed with more interests. And the experiment shows that relatively dense AlN samples with less oxygen impurities and the secondary phase can be obtained by adding the composite sintering aids, Y2O3-Li2O, Y2O3-CaC2, Y2O3-CaF2, Y2O3-Dy2O3, to aluminum nitride.

In a word, selecting appropriate composite sintering additives can help to get lower sintering temperature and effectively purify the grain boundary, so as to obtain AlN with high thermal conductivity.

In case if you have any other questions about ceramic PCB or MCPCB, you are welcome to contact us via email at sales@bestpcbs.com. We are fully equipped to handle your PCB or MCPCB manufacturing requirements.

You may also like

Pros and Cons of the Ceramic PCB
Friday, May 27th, 2022

Ceramic PCB is used in various fields because of its high-quality thermal and mechanical advantages. The board’s unique features and high thermal conductivity have enabled it to be used in devices big and small. But meanwhile, it is not flawless. There are also some disadvantages.

Ceramic PCB

Pros of ceramic PCB

It is supposed that you are familiar with the features below that the ceramic PCB has.

  • Excellent thermal conductivity.
  • Good insulation.
  • High temperature resistance.
  • Great mechanical properties.
  • Compatible with CTE (Coefficient of Thermal Expansion) of components.
  • High-density assembly possible.
  • Non-toxic, conducive to environmental protection.

Cons of ceramic PCB

There are also a few disadvantages that can be found in ceramic PCB. Some of the disadvantages are stated below.

  • Cost—It has a higher cost compared to other printed circuit boards.
  • Handling—Since ceramic is fragile, it entails careful handling. As ceramic PCB is made for tight spaces, it is very small and this makes it even harder to handle.
  • Availability—It is not as widely available.

Everything has two sides. And ceramic PCB has no exception. But if considering all the advantages and disadvantages, ceramic PCB still takes the win amongst all other boards.

So, this is the end of the article about the advantages and disadvantages of the ceramic PCB. In case if you have any other questions about ceramic PCB or MCPCB, you are welcome to contact us via email at sales@bestpcbs.com. We are fully equipped to handle your PCB or MCPCB manufacturing requirements.

You may also like