pcb
Home > Blog

Archive for the ‘Ceramic PCB’ Category

What are the ceramic pcb material?
Monday, September 16th, 2024

In this ever-changing era, electronic devices are changing our lives at an unprecedented speed. From smartphones to cars to industrial automation equipment, these products all hide an important component – ceramic printed circuit boards (Ceramic PCBs).

What are the commonly used materials for ceramic PCB substrates?

Imagine that in a tiny space, there are countless electronic components, which are closely arranged and interconnected to form a complex and sophisticated network. This is the working environment of ceramic PCBs. In order to ensure that these components can work normally under harsh conditions such as high temperature and high pressure, it is crucial to choose a suitable substrate.

Commonly used ceramic PCB substrates are mainly the following:

1. Alumina (Al2O3):

  • It is one of the preferred materials for its excellent insulation performance, good thermal conductivity and high mechanical strength.
What are the ceramic pcb material?
  • Alumina substrates are usually used to make single-layer ceramic PCBs, which are suitable for applications under medium temperature and pressure conditions.
  • It has extremely high chemical stability and is not easy to react with other substances, thus ensuring the long-term reliability of the circuit.

2. Aluminum nitride (AlN):

  • Compared with aluminum oxide, aluminum nitride has higher thermal conductivity and can dissipate heat more effectively, making it an ideal choice for manufacturing high-performance electronic products.
What are the ceramic pcb material?
  • Aluminum nitride substrates are often used to make double-layer or multi-layer ceramic PCBs, especially for high-frequency signal transmission and high power density applications.
  • In fields such as semiconductor packaging and LED lighting, the outstanding performance of aluminum nitride makes it one of the indispensable materials.

3. Silicon nitride (Si3N4):

  • It is known for its excellent heat resistance and chemical stability, and it still performs well in extreme environments.
  • Silicon nitride substrates not only have extremely high mechanical strength, but also can withstand a higher temperature range. They are widely used in demanding scenarios such as aerospace, automotive electronics and military equipment.

What are the commonly used conductor materials for ceramic PCBs?

Conductor materials play an extremely important role in ceramic PCBs. They are responsible for transmitting signals and electricity and are the link between various functional modules.

Common conductor materials include precious metals such as copper, gold, and silver, as well as nickel plating. Among them, copper is widely used for its good conductivity and affordable price; gold shines in high-end applications for its excellent corrosion resistance; silver is between the two, combining cost-effectiveness and reliability.

  • As the most commonly used conductor material, copper foil is soft enough to easily combine with ceramic substrates to form a durable circuit path.
  • Gold foil is mainly used in occasions that require high reliability and long life, such as aerospace, medical equipment, etc. The oxidation resistance and corrosion resistance of gold enable it to maintain stable electrical performance in extreme environments, ensuring the normal operation of key components.
  • Silver foil is widely used in mid- and low-end products due to its good conductivity and low cost. Silver’s conductivity is second only to gold, but it is more affordable in terms of cost and is suitable for large-scale production and application. In certain specific fields, such as high-frequency circuits and wireless communication equipment, silver foil can also play an important role.

What are the types of ceramic PCBs?

With the advancement of technology, ceramic PCBs have also developed into various types to adapt to various application scenarios:

1. Single-layer ceramic PCB:

  • Simple structure, low cost, suitable for occasions with low performance requirements.
  • This type of PCB usually has only one layer of ceramic substrate, on which a layer of conductor material is laid to form a basic circuit layout.
  • Single-layer ceramic PCBs are mainly used for entry-level electronic products, such as ordinary household appliances and basic communication equipment.

2. Double-layer or multi-layer ceramic PCB:

  • By stacking multiple layers of ceramic substrates and setting interconnection channels between them, more complex circuit designs can be achieved, which is suitable for high-end products that require high-density integration.
What are the ceramic pcb material?
  • This type of PCB can accommodate more electronic components and more complex circuit structures, and is widely used in high-performance computing, advanced medical equipment and high-end automotive electronic systems.
  • Multilayer ceramic PCBs have high design flexibility and can be customized according to specific needs to achieve optimal performance.

3. Hybrid ceramic PCB:

  • Combining ceramic substrates of different materials, giving full play to their respective advantages, suitable for use in special environments.
  • This type of PCB usually uses two or more ceramic materials, such as a combination of alumina and aluminum nitride, which can ensure good thermal conductivity and provide sufficient mechanical strength.
  • Hybrid ceramic PCBs are suitable for applications with extreme temperature changes and high pressure conditions, such as deep-sea exploration equipment and space exploration instruments.

Advantages and characteristics of ceramic PCB

The reason why ceramic PCBs stand out among many materials is inseparable from their unique advantages:

High temperature resistance:

  • It can remain stable at temperatures up to 1000℃, making it an ideal choice for high-temperature working environments.
  • Ceramic materials themselves have extremely high melting points and are not easy to deform or damage even under extremely high temperature conditions, which enables ceramic PCBs to operate reliably in extreme environments.

High reliability:

  • It will not deform or damage even under long-term exposure to extreme conditions, ensuring the continuous and reliable operation of the system.
  • Ceramic materials have high chemical stability and are not easy to react with other substances, so they can maintain stable electrical performance in harsh environments.

Excellent thermal management capabilities:

  • Efficient heat dissipation helps to extend the life of components and improve overall efficiency.
  • The high thermal conductivity of ceramic materials enables it to quickly conduct heat away, effectively reducing the temperature of the circuit board, thereby improving the reliability and service life of the system.

Environmentally friendly and pollution-free:

  • The production process meets green environmental protection standards and is easy to recycle and reuse after disposal.
  • The production process of ceramic PCBs produces less waste, and the discarded materials can be recycled, which is in line with the concept of sustainable development.

These characteristics make ceramic PCBs an important force in promoting scientific and technological progress, and continue to lead the industry to a higher level.

What are the applications of ceramic PCBs?

From aerospace to medical equipment, from automotive electronics to communication facilities, ceramic PCBs are everywhere.

In satellite navigation systems, ceramic PCBs ensure positioning accuracy with their reliable signal transmission capabilities; in medical devices such as pacemakers, they rely on their ability to accurately control current to protect patient safety. In addition, in the construction of 5G base stations, ceramic PCBs also play an irreplaceable role, supporting the demand for high-speed data transmission.

Specific application cases are as follows:

  • 1. Aerospace: In satellite communication systems, the high reliability of ceramic PCBs ensures the accuracy of data transmission. During long-term flight, ceramic PCBs can resist extreme temperature changes, maintain stable electrical performance, and ensure unimpeded communication between satellites and ground stations.
  • 2. Medical equipment: In implantable medical devices such as pacemakers, the miniaturization and high reliability of ceramic PCBs become key factors. Ceramic materials have good biocompatibility and will not have adverse effects on human tissues. At the same time, they can provide precise current control to ensure therapeutic effects.
  • 3. Automotive electronics: In modern automobiles, ceramic PCBs are widely used in key components such as engine control systems, sensors, and navigation systems. The high temperature resistance of ceramic PCBs enables it to operate reliably in high-temperature environments in the engine compartment, ensuring the safety and comfort of the vehicle.
  • 4. 5G communication: In the construction and maintenance of 5G base stations, the efficient heat dissipation capacity and high-density integration characteristics of ceramic PCBs make them an ideal choice. Ceramic PCBs can handle a large number of data transmission tasks and ensure the high-speed and stable operation of 5G networks.

What is the production process of ceramic PCB?

The production process of ceramic PCBs is very delicate, and every step needs to be strictly controlled to ensure the high quality of the final product.

  • 1. Raw material preparation: First, the required ceramic powder and other raw materials need to be prepared to ensure their purity and uniformity.
  • 2. Molding: The ceramic powder is made into a substrate by pressing or casting. The temperature and pressure need to be strictly controlled during the molding process to ensure the flatness and consistency of the substrate.
  • 3. Sintering: The formed substrate is placed in a high-temperature furnace for sintering. The sintering process requires precise control of the temperature curve to ensure the density and stability of the ceramic substrate.
  • 4. Metallization: A layer of conductor material such as copper, gold or silver is applied to the ceramic substrate by electroplating, spraying or other means. This process requires highly precise operation to ensure the uniform distribution and good adhesion of the conductor layer.
  • 5. Circuit design and etching: According to the circuit design drawings, etching is performed on the conductor layer to form the required circuit pattern. The etching process requires the use of special chemicals, and the time and temperature need to be precisely controlled to ensure the accuracy and clarity of the circuit pattern.
  • 6. Testing and inspection: Finally, the completed ceramic PCB is fully tested and inspected to ensure that its electrical and mechanical properties meet the design requirements. The test items include resistance, voltage, current and other indicators.

Through this series of fine process flows, ceramic PCBs have excellent performance and reliability and have become an indispensable part of the electronics industry.

What are the development trends and prospects of ceramic PCBs?

With the continuous advancement of science and technology and the growing social needs, ceramic PCBs are also constantly developing and improving. In the future, ceramic PCBs will show greater potential in the following aspects:

  • 1. Miniaturization and integration: As electronic products develop towards smaller and higher integration, ceramic PCBs will continue to shrink in size while accommodating more electronic components. This means achieving more complex functions in a limited space and improving the performance of the overall system.
  • 2. High performance and high reliability: In the future, ceramic PCBs will pay more attention to high performance and high reliability, especially in applications under extreme environments. The application of new materials and new technologies will further enhance the temperature resistance, mechanical strength and electrical stability of ceramic PCBs, enabling them to play a role in a wider range of fields.
  • 3. Environmental protection and sustainable development: As the global awareness of environmental protection increases, the production process of ceramic PCBs will pay more attention to environmental protection and sustainable development. The research and development and application of new environmentally friendly materials will become an important direction to reduce the impact on the environment.
  • 4. Intelligence and automation: Ceramic PCBs in the future will be more intelligent and automated. By introducing advanced manufacturing technology and intelligent control systems, production efficiency and product quality can be further improved, costs can be reduced, and market demand can be better met.

In short, as an advanced electronic material, ceramic PCBs have unique advantages and broad application prospects, making them an important force in promoting scientific and technological progress. With the continuous advancement of technology and changes in social needs, ceramic PCBs will continue to show greater potential and development space in various fields.

You may also like

Ceramic base pcb-Fast Delivery&Customization
Monday, September 16th, 2024

In this field full of innovation and challenges, ceramic base pcb have quietly emerged and quickly attracted the attention of the industry with their excellent performance and broad application prospects.

What is a ceramic base pcb?

Ceramic base pcb are made of ceramic as the matrix material through complex and sophisticated processes. This type of circuit board has many unique properties, which makes it widely used in many fields.

Ceramic base pcb-Fast Delivery&Customization

Ceramic substrates are easier to break than glass fiber boards, and the process is more difficult than ordinary PCB boards, and the process technology requirements are high. In the production process, there are important process links such as drilling, copper coating, and etching.

The copper coating process plays a key role in the ceramic substrate PCB process. The commonly used copper coating processes are DBC process and DPC process. In the DPC process, the electroplating process is adopted, and the adhesion layer and seed layer are formed on the ceramic surface through the sputtering process to increase the adhesion strength of the metal circuit and play a conductive role.

The etching of ceramic-based circuit boards is divided into inner layer etching and outer layer etching. Different etching methods have different processes and characteristics. At the same time, some problems may occur in the etching process, such as incomplete film removal, board surface oxidation, incomplete copper etching, excessive copper etching, etc., and corresponding improvement methods need to be adopted.

In short, ceramic base pcb occupy an important position in the electronics field due to their unique properties and complex manufacturing processes.

What are the different types of ceramic PCB?

(I) Classification by material

  • Alumina ceramic substrates are the most commonly used substrate materials in the electronics industry. They have high strength and chemical stability, rich raw material sources, and are suitable for various technical manufacturing and different shapes.
  • Beryllium oxide ceramic substrates have a higher thermal conductivity than metal aluminum and are used in situations where high thermal conductivity is required, but the temperature drops rapidly after exceeding 300°C, and their toxicity limits their own development.
  • Aluminum nitride ceramic substrates have high thermal conductivity and expansion coefficients that match Si, and are ideal large-scale integrated circuit heat dissipation substrates and packaging materials.
  • Silicon nitride ceramic substrates have higher mechanical strength than other ceramics and can achieve long life in harsh working environments and HEV/EV and other renewable energy application conditions.

(II) Classification by process

  • Thick film ceramic PCBs use screen printing technology to coat metal slurry on the surface of ceramic substrates, which are dried and sintered at high temperature. Its advantage is that the process is relatively simple and the cost is low.
  • Low-temperature co-fired ceramic (LTCC) PCB first mixes inorganic alumina powder with about 30% – 50% glass material and organic binder to make a slurry, scrapes it into sheets to form a green embryo, then drills through holes according to the design of each layer, uses screen printing technology to fill holes and print circuits, and finally sintered at 850 – 900℃.
  • High-temperature co-fired ceramic (HTCC) PCB first adds ceramic powder to an organic binder to make a paste slurry, scrapes it into sheets to form a green embryo, then drills through holes, uses screen printing technology to fill holes and print circuits, and sintered at 1300 – 1600℃.

What are the characteristics of ceramic base pcb?

(I) Performance advantages

  • First, it has strong mechanical stress, can maintain a stable shape in various complex use environments, and is not easily deformed by external forces.
Ceramic base pcb-Fast Delivery&Customization
  • High thermal conductivity is one of its notable features. For example, the thermal conductivity of alumina ceramic substrates is between 28 and 35 W/(m・K), and the theoretical thermal conductivity of aluminum nitride ceramic substrates at room temperature is 319W/(m・K), which allows the heat generated by electronic components to be quickly dissipated, effectively avoiding circuit failures caused by local overheating.
  • High insulation ensures the safe and stable operation of the circuit and prevents leakage. Good thermal cycle performance is also one of its advantages, with a cycle number of up to 50,000 times and high reliability.
  • In an environment with extreme temperature changes, ceramic base pcb can still maintain stable performance, which is crucial for some electronic devices that need to work in harsh environments.

(II) Comparison with traditional PCBs

Compared with conventional PCBs, ceramic base pcb have obvious advantages.

  • In terms of thermal conductivity, traditional PCBs usually require heat dissipation holes, inner metal planes, heat dissipation platforms, and active cooling devices such as fans to remove heat from hot components. However, ceramic base pcb, with their high thermal conductivity, do not require these additional components and can easily transfer heat to active cooling components, thermal landings, or device packaging.
  • In terms of mechanical strength, ceramic base pcb have higher compressive strength and surface hardness, higher durability, and longer service life.
  • In terms of corrosion resistance, ceramic materials are extremely resistant to most chemicals and are suitable for applications in harsh environments.

However, ceramic base pcb also have some disadvantages.

  • The cost is higher than that of standard PCBs, which is due to the relatively complex materials and manufacturing processes.
  • Reduced availability, because the current production scale of ceramic base pcb is relatively small and the manufacturing difficulty is relatively high.
  • Fragility is one of the main disadvantages of ceramic base pcb, and currently only small-area circuit boards can be manufactured.

Manufacturing process of ceramic base pcb

(I) Drilling process

Ceramic substrates are generally drilled by laser. Laser drilling technology has many advantages over traditional drilling technology, such as high precision, high surface flatness, roughness of 0.1μm~0.3μm, laser drilling aperture of 0.15mm-0.5mm, and even below 0.06mm.

(II) Copper coating process

Commonly used copper coating processes include DBC process and DPC process.

In the DPC process, electroplating process is adopted. Copper coating refers to covering the area without wiring on the circuit board with copper foil, which is connected to the ground wire to increase the ground wire area, reduce the loop area, reduce the voltage drop, and improve the power supply efficiency and anti-interference ability.

In addition to reducing the ground wire impedance, copper coating also has the functions of reducing the loop cross-sectional area and enhancing the signal mirror loop.

Therefore, the copper coating process plays a very critical role in the ceramic substrate PCB process. Incomplete, truncated mirror loop or incorrectly positioned copper layer often leads to new interference, which has a negative impact on the use of the circuit board.

(III) Etching process

The etching of ceramic substrates is divided into inner layer etching and outer layer etching. The inner layer etching adopts acid etching, and wet film or dry film is used as resist; the outer layer etching adopts alkaline etching, and tin-lead is used as resist.

1. The alkaline etching process is as follows:

  • Defilming: Use film stripping liquid to remove the film on the circuit board surface to expose the unprocessed copper surface.
  • Etching: Use etching liquid to etch away the unnecessary bottom copper, leaving a thickened circuit.
  • New washing liquid: Use monohydrated ammonia without copper ions, and use ammonium chloride solution to remove the residual liquid on the board surface.
  • Hole filling: Mainly remove excess palladium ions in non-plated through holes to prevent gold ions from being deposited in the gold immersion process.
  • Tin stripping: Use nitric acid solution to strip the tin-lead layer.

2. Acid copper chloride etching process:

  • Development: Use sodium carbonate to dissolve the part of the dry film that has not been irradiated by ultraviolet light, and retain the part that has been irradiated.
  • Etching: According to a certain proportion of solution, the copper surface exposed to the outside after the dry film or wet film is dissolved is dissolved with acidic copper chloride etching solution.
  • Film stripping: According to a certain proportion of solution, the protective film on the circuit is dissolved under a specific temperature and speed environment.

Common problems and improvement methods of etching process:

  • 1. Incomplete film stripping: It may be that the film stripping solution concentration is not enough or the operation time is insufficient. It is necessary to adjust the film stripping solution concentration or extend the operation time.
  • 2. Board surface oxidation: It may be that the exposure time is too long or the ambient humidity is high during the etching process. The exposure time should be shortened as much as possible and the ambient humidity should be controlled.
  • 3. Incomplete copper etching: It may be that the etching solution concentration is low or the etching time is short. The etching solution concentration needs to be increased or the etching time needs to be extended.
  • 4. Excessive copper etching: It may be that the etching time is too long or the etching solution concentration is too high. The etching time should be reduced or the etching solution concentration should be reduced.

What is a ceramic PCB used for?

(I) High-frequency applications

Ceramic base pcb perform well in high-frequency applications. Due to its high dielectric constant and low dielectric loss tangent value, it can maintain good stability and reliability in high-frequency signal transmission.

In high-frequency electronic equipment such as mobile phones, microwave ovens, radars, communication equipment and other fields, ceramic base pcb can effectively reduce noise interference and improve signal transmission quality. In addition, ceramic base pcb can withstand higher output power to meet the power requirements of high-frequency equipment.

Ceramic base pcb-Fast Delivery&Customization

(II) Aerospace

ceramic base pcb have important application value in the aerospace field. Its thermal expansion coefficient is very close to silicon and much lower than most common metals, which enables it to work well with other electronic components in an environment with extreme temperature changes and will not damage the chip due to thermal expansion and contraction.

In key parts of aircraft electronic equipment, navigation systems, rocket engines, etc., ceramic base pcb can withstand harsh environments such as high temperature, high pressure, radiation, and corrosion to ensure the reliability of the equipment.

(III) Other fields

ceramic base pcb are also widely used in power devices, communication substrates, mobile phone application module substrates, automotive electronic substrates and other fields.

In the field of power devices, such as the power electronic system of electric vehicles, DPC ceramic circuit boards, as ideal electronic substrates, play an important role in battery management systems, motor drive systems and fast charging systems.

In terms of communication substrates, ceramic substrates, that is, high-frequency filters used in high-frequency ceramic substrates, are used in 5G network equipment. They have low high-frequency loss and low dielectric constant. The dielectric loss of signals propagating in them can reach the lowest among all current PCBs, which is particularly suitable for high-frequency communications such as 5G.

In the mobile phone application module substrate, ceramic base pcb can meet the requirements of mobile phones for miniaturization and high performance. In the field of automotive electronic substrates, new energy vehicles have high requirements for heat dissipation. Ceramic substrates have good heat dissipation effects and can dissipate high heat in the power system in time to ensure the normal operation of large power loads.

Development prospects of ceramic base pcb

(I) Market size growth

In recent years, the market size of ceramic base pcb has shown a trend of continuous growth.

First, with the development of miniaturization, high performance and multi-functionality of electronic equipment, the requirements for heat dissipation performance, insulation performance and high-frequency characteristics of circuit boards are getting higher and higher.

Secondly, technological progress has driven the cost reduction and production efficiency improvement of ceramic base pcb, which will further promote the expansion of its market size.

Finally, the continuous emergence of emerging application fields has also brought a broad market space for ceramic base pcb.

(II) Industry challenges and opportunities

Technical barriers: The ceramic base pcb industry is a technology-intensive industry. Its research and development and production require knowledge of multiple disciplines such as electronics, computers, materials, and chemicals, and there are many product types, long processes, and complex process technologies.

Fundamental barriers: The ceramic base pcb industry has complex process technologies, many links, and high customization requirements. In the early stage, a large amount of capital investment is required for the purchase of equipment, new plant buildings and supporting facilities, procurement of raw materials, and the employment of R&D and production personnel.

Talent barriers: The ceramic circuit board industry is highly professional. Technical and R&D personnel not only need to have professional knowledge in multiple fields, but also need to have a deep understanding and familiarity with product applications, process flows, equipment improvements, etc.

In summary, although the ceramic base pcb industry faces many challenges, it has also ushered in rare development opportunities. Driven by policy support, market demand growth, and technological innovation, the ceramic base pcb industry is expected to achieve sustained and rapid development.

You may also like

LTCC Ceramic PCB Manufacturer, High Quality&Customization
Monday, September 16th, 2024

What is LTCC?

What is LTCC?LTCC low temperature cofired ceramic technology.What is the full name of LTCC?LTCC Ceramic PCB English full name Low temperature cofired ceramic, low temperature cofired ceramic technology is a multilayer circuit made by stacking unfired cast ceramic materials together, with printed interconnecting conductors, components, and circuits inside, and sintering the structure into an integrated ceramic multilayer material.

What are the advantages of LTCC?

  1. Green: LTCC technology uses materials and production processes that are more environmentally friendly, meeting the requirements of green manufacturing.
  2. Good compatibility: Compared with traditional high-temperature co-fired ceramic technology, LTCC is more compatible and can be adapted to more application scenarios.
  3. High production efficiency: LTCC technology has high production efficiency and can meet the needs of mass production.
  4. Low operating costs: LTCC technology has relatively low operating costs due to its productivity and compatibility advantages.
  5. High quality factor: In the RF microwave field, LTCC has the advantages of high quality factor, high stability, high integration, etc., which is suitable for high-performance electronic systems.
  6. Miniaturization and high density: LTCC technology can realize the miniaturization and high density of the circuit, which is conducive to the compact design and light weight of the system.
  7. Excellent electrical properties: LTCC material dielectric constant can be changed in a wide range, increasing the flexibility of circuit design, and at the same time has excellent high-frequency high-Q characteristics, the use of frequency can be as high as tens of GHz.
  8. High conductivity: the use of Ag, Cu and other metal materials with high conductivity as a conductor material, is conducive to improving the quality factor of the circuit system.
  9. Good temperature characteristics: good temperature characteristics, such as smaller coefficient of thermal expansion, smaller temperature coefficient of dielectric constant, etc., to ensure the stability and reliability of the circuit.
  10. High-temperature characteristics: can adapt to high current and high-temperature characteristics requirements, and has a better thermal conductivity than ordinary PCB circuit substrate, to improve the life and reliability of the circuit.
  11. Non-continuous production process: allows for inspection of raw substrates, improving yield and reducing costs.

What are LTCC materials?

LTCC materials can basically be categorized into two main groups:
① Low dielectric constant materials (εr below 10), which are mainly used for passive integration, system level packaging and multilayer circuit substrates. In principle, the dielectric constant of such materials should be as low as possible to meet the requirements of high-speed signal transmission in the circuit; ② materials with medium to high dielectric constant, mainly used in passive integration, system-level packaging and multilayer circuit substrates.
② materials with medium-high dielectric constant (εr in 10 or more), mainly used to meet the special needs of various types of microwave devices.

From the material composition and structure division, the current low-temperature co-fired ceramic material system can be divided into three major categories: glass ceramics, ceramic-glass composites and glass bonded ceramics.

What is the LTCC process?

What is the LTCC process?

Cast:The purpose of casting is to transform ceramic powders into raw ceramic tapes for subsequent processing. A suitable binder is added to the ceramic powder, which is ball-milled and mixed to form a high-viscosity paste.
Perforation: perforation is a multilayer ceramic substrate manufacturing is extremely critical process technology, perforation hole size, location, precision, etc., directly affect the substrate internal alignment of the pass-through, wiring density, substrate quality and yield.
Fill holes: fill holes is the use of fill holes in the bottom of the machine airbag pressure will be masked filler plate filling paste extruded into the corresponding raw ceramic sheet through-hole, after drying, to complete the metallization process of raw ceramic.
Stacking and hot pressing: Stacking is printed raw porcelain in accordance with the design of the number and order of layers stacked together in a certain temperature and pressure, so that the raw porcelain tightly bonded to form a complete multi-layer substrate blanks.
Slicing: Slicing is to cut the raw porcelain blanks after lamination into raw porcelain blocks according to the design size requirements.
Co-firing: After lamination and slicing, the raw ceramic blocks are put onto the support in the sintering furnace, and sintered into qualified substrates under the appropriate curves and atmospheric conditions.
Inspection: Inspection is the basis for judging the quality of the substrate.

What is the firing temperature of LTCC?

LTCC technology, or Low Temperature Co-Fired Ceramic Technology, is an advanced passive integrated and hybrid circuit packaging technology. This technology introduces a glass phase by adding a certain amount of glass powder to the ceramic slurry, allowing for a firing temperature that can be lower than 950°C. Specifically, the main feature of LTCC technology is the use of low-temperature (800°C~900°C) sintering materials and organic binder/incremental enhancers mixed in a certain ratio to generate raw ceramic wafers or raw embryo wafers by casting, followed by punching and laser punching, metallized wiring and through-hole metallization on the raw ceramic tape, followed by stacking, hot pressing, slicing, and gluing rows, and finally sintering at about 900°C to make multilayer Wiring substrate. This technology is easier to control during the sintering process and has a lower sintering temperature, which enables the realization of passive/active integrated functional modules, further miniaturizing the circuits and making them more dense, and is particularly suitable for components for high-frequency communication.

What is the difference between LTCC and HTCC?

Sintering Temperature: LTCC (Low Temperature Co-fired Ceramics) are generally sintered at temperatures between 800°C and 950°C, while HTCC (High Temperature Co-fired Ceramics) are sintered at temperatures between 1600°C and 1800°C. This difference in temperature directly affects the temperature of the components used. This temperature difference directly affects the choice of materials used and manufacturing process.
Materials Used: LTCC primarily uses metals with low melting points such as silver, gold, copper and palladium-silver, while HTCC uses metals with high melting points such as tungsten, molybdenum and manganese. In addition, LTCC uses dielectric materials such as glass-ceramics, ceramic-glass composites, and glass-bonded ceramics, while HTCC mainly uses high-temperature ceramic materials such as alumina and aluminum nitride.
Manufacturing process: The manufacturing processes of LTCC and HTCC are similar, both including the preparation of slurry, casting molding, drying of raw ceramic substrates, drilling of guide through holes, screen printing to fill the holes, screen printing lines, stacked sintering and other steps. However, the differences in firing temperatures and materials used result in different specific operations during the manufacturing process.
Areas of application: Due to LTCC’s lower sintering temperature and the use of low melting point metals, it is more suitable for high frequency circuits, RF modules, microwave circuits, and so on. HTCC, on the other hand, due to its higher sintering temperature and use of high melting point metals, is more suitable for high temperature, high power and high frequency applications such as power electronics, sensors and aerospace electronics.

What is the difference between LTCC and MLCC?

Materials: LTCCs use dielectric materials such as glass ceramics, ceramic-glass composites, and glass-bonded ceramics, while MLCCs use barium titanate (BaTiO3), titanium oxide (TiO2), calcium zirconate (CaZrO3), or other dielectric ceramic materials.
Sintering Temperature: LTCC is generally sintered between 800°C and 950°C, which is a low temperature sintering, while MLCC is generally sintered between 1100°C and 1350°C, which is a high temperature sintering.
Product type: LTCC technology is mainly used for manufacturing filters, diplexers, couplers, baluns, antennas, ceramic substrates, ceramic package housings, etc., while MLCC is mainly used for capacitors.
Application areas: LTCC application areas are mainly focused on high frequency circuits, RF modules, microwave circuits and other areas that require high frequency characteristics; MLCC is widely used in consumer electronics, automotive electronics, communication equipment and many other areas.
Manufacturing process: LTCC’s manufacturing process involves laser drilling, microvia slurry injection, precision conductor paste printing, etc., which enables the integration of passive components; MLCC’s manufacturing process focuses on the basic construction and sintering process of multilayer ceramic capacitors.

Application of ltcc?

Communication field: LTCC technology is widely used in high-frequency communication components, especially in emerging fields such as 5G communication, Internet of Things, artificial intelligence, etc. Its high-density packaging technology can meet the demand for miniaturization and high-density of electronic components in these fields.
Automotive electronics: with the development of automotive electronics technology, the control system of modern automobiles depends more and more on electronic and information technology. LTCC technology can provide a high temperature, high humidity working environment to ensure the high reliability of the circuit system, so it has important applications in the field of automotive electronics.
Medical equipment: LTCC technology can greatly reduce the size of the three-dimensional structure of the circuit design, to adapt to the needs of medical equipment for miniaturization, high performance, and therefore has a wide range of applications in the field of medical equipment.
Aerospace: LTCC technology was first applied in aviation, aerospace and military electronic equipment, such as the development of satellite control circuit components, showing its reliability and high performance in extreme environments.

You may also like

What is a ceramic substrate pcb? What is it used for?
Friday, September 13th, 2024

Ceramic substrate PCB is a printed circuit board with ceramic material as substrate. With its excellent performance and unique technical advantages, it occupies an important position in today’s rapidly developing electronics industry. Its high thermal conductivity, high insulation, high temperature resistance, corrosion resistance and other characteristics enable it to be widely used in many fields.

What is a ceramic substrate?

‌Ceramic substrate is a special process board in which copper foil is directly bonded to the surface (single or double sides) of alumina (Al2O3) or aluminum nitride (AlN) ceramic substrate at high temperature. ‌

What is a ceramic substrate pcb? What is it used for?

This ultra-thin composite substrate has excellent electrical insulation properties, high thermal conductivity, excellent soft solderability and high adhesion strength, and can be etched with various patterns like PCB boards, with great current carrying capacity.

Therefore, ceramic substrate has become the basic material for high-power power electronic circuit structure technology and interconnection technology.

It has a wide range of applications, including but not limited to semiconductor modules, integrated circuits and electronic ceramics, among which alumina is one of the most commonly used ceramic substrate materials.

The characteristics of ceramic substrates include strong mechanical stress, shape stability, high strength, high thermal conductivity, high insulation, strong bonding, corrosion resistance, and good thermal cycling performance, with a cycle number of up to 50,000 times and high reliability.

In addition, the operating temperature range of ceramic substrates is wide, from -55°C to 850°C, and its thermal expansion coefficient is close to that of silicon, which simplifies the production process of power modules.

How thick is a ceramic substrate?

The thickness of ceramic substrates is generally between tens and hundreds of microns. ‌ This material usually has a flat surface for connecting and supporting microelectronic components.

What is a ceramic substrate pcb? What is it used for?

The thickness of ceramic substrates can be precisely processed according to specific needs to meet different application scenarios.

The thickness of alumina ceramic substrates can be adjusted between 0.2-1.5mm, which shows that the thickness range of ceramic substrates is quite wide and can be customized according to specific application needs. ‌

What is a ceramic PCB used for?

Due to its unique performance and functions, ceramic PCB is widely used in many fields, including but not limited to LED lighting, semiconductor coolers, high-power semiconductor modules, power control circuits, electronic heaters, intelligent power devices, power hybrid circuits, high-frequency switching power supplies, automotive electronics, solid-state relays, military electronics, aerospace, communications, etc.

What is a ceramic substrate pcb? What is it used for?

The requirements for electronic products in these application fields are to become thinner, smaller, and have more functions. As a new type of circuit material, ceramic PCB effectively provides a solution for the miniaturization of modern electronic products. Its advantages are:

  • Heat dissipation performance and current carrying capacity‌: The heat dissipation performance, current carrying capacity, insulation, thermal expansion coefficient, etc. of ceramic substrates are better than those of ordinary glass fiber PCB boards, and are particularly suitable for high-power power electronic modules, aerospace, military electronics and other products.
  • Thermal conductivity‌: Ceramic PCB has excellent thermal conductivity and can effectively dissipate the heat generated by components, making it the first choice for applications that generate a lot of heat and require efficient thermal management.
  • ‌Electrical performance‌: The excellent electrical performance of ceramic materials at high frequencies makes ceramic PCBs particularly suitable for radio frequency (RF) and microwave applications, which can maintain signal integrity and minimize signal loss.
  • ‌Durability and mechanical strength‌: Ceramic PCBs have impressive mechanical strength and durability, and can withstand challenging mechanical stress and vibration, while having good chemical resistance and the ability to withstand harsh environments.

In summary, ceramic PCBs occupy an important position in high-performance electronic applications due to their excellent physical and electrical properties, as well as high reliability and stability, and are an important part of the development of modern electronic technology.

What is the difference between ceramic substrate and FR-4?

The main differences between ceramic substrates and FR-4 are their physical and electrical properties, cost, production cycle, application areas, and high-frequency performance. ‌

What is a ceramic substrate pcb? What is it used for?

‌Physical and electrical properties‌:

  • Ceramic substrates use ceramic substrates, such as alumina ceramic substrates, aluminum nitride ceramic substrates, silicon nitride ceramic substrates, etc., with good heat dissipation and insulation, thermal conductivity between 25w and 230w, and insulation resistance greater than or equal to 10 to the 14th power.
  • In contrast, FR-4 is made of glass fiber, which has poor heat dissipation performance and no insulation performance. It needs to add an insulation layer to transfer heat, and its heat dissipation performance is only a few watts.

‌Cost and production cycle‌:

  • The production cost of ceramic substrates is high, and the production cycle is usually 10~15 days.
  • In contrast, the production cost of FR-4 substrates is lower, and the production cycle is shorter. Some can be shipped in 24 hours.

‌Application areas‌:

  • Ceramic substrates are widely used in high thermal conductivity, high current, high insulation, high frequency and other fields due to their high thermal conductivity, excellent insulation, high frequency performance, high temperature resistance and corrosion resistance.
  • FR-4 substrates are more widely used and in high demand due to their low cost and short production cycle.

‌High frequency performance‌:

  • The dielectric constant of ceramic substrates is relatively stable and low, generally around 7~10, with high high frequency performance and low dielectric loss, faster and more stable signal transmission, so it is suitable for high frequency communication.
  • In contrast, the high frequency performance of FR-4 is not as good as that of ceramic substrates.

In summary, there are significant differences between ceramic substrates and FR-4 in terms of physical and electrical properties, cost, production cycle, and application areas.

What is a ceramic substrate for power electronics?

‌The ceramic substrate for power electronics is a special process board made by directly bonding copper foil to the surface (single or double sides) of an alumina (Al2O3) or aluminum nitride (AlN) ceramic substrate at high temperature.

This ultra-thin composite substrate has excellent electrical insulation properties, high thermal conductivity, excellent soft solderability and high adhesion strength, and can be etched with various patterns like a PCB board, with a large current carrying capacity.

Therefore, ceramic substrates have become the basic materials for high-power power electronic circuit structure technology and interconnection technology.

The characteristics of ceramic substrates include strong mechanical stress, stable shape, high strength, high thermal conductivity, high insulation, strong bonding, corrosion resistance, good thermal cycle performance (cycle times up to 50,000 times, high reliability), no pollution, no pollution, wide operating temperature (-55℃~850℃), thermal expansion coefficient close to silicon, and simplified production process of power modules.

These characteristics make ceramic substrates widely used in the field of power electronics, especially in application scenarios that require high heat dissipation, low thermal resistance, long life, and voltage resistance, such as home appliance indicator lights, car lights, street lights, and large outdoor billboards.

In addition, the market for ceramic substrates is expected to increase by 94.27% in the next three years, showing a strong demand for localization. With the improvement of production technology and equipment, product prices have accelerated rationalization, further expanding its application areas in the LED industry.

The development trend of diversification and structural integration of ceramic substrates has put forward higher requirements on the performance of packaging substrates. They have been widely used in electronic device packaging, such as thin film ceramic substrates, thick film printed ceramic substrates, and direct bonding ceramic substrates. These substrates have high thermal conductivity, good heat resistance, low thermal expansion coefficient, high mechanical strength, good insulation, corrosion resistance, and radiation resistance.

Conclusion:

Ceramic substrate PCB has shown great value in the electronics industry with its excellent performance and wide range of uses. With the continuous advancement of science and technology, ceramic substrate PCB will surely be more deeply applied and developed in more fields, contributing to the innovation and progress of electronic technology.

As a professional ceramic circuit board manufacturer, BEST Technology has advanced production technology and a strict quality control system. It is always committed to providing customers with high-quality products and professional services, and continuously promoting the development of the ceramic circuit board industry.

You may also like

Multilayer ceramic pcb: its process and advantages
Friday, September 13th, 2024

As an innovative technological achievement in the field of electronics, multilayer ceramic pcb are gradually becoming a key force in promoting the development of the electronics industry. It uses ceramic materials as substrates and integrates advanced printed circuit technology, providing solid support for the miniaturization and high performance of electronic equipment.

What is a multilayer ceramic pcb?

A multilayer ceramic pcb is an electronic component that uses ceramic as a matrix material and makes metal circuits on it. It is mainly divided into planar ceramic printed circuit boards and multilayer ceramic pcb.

Planar ceramic printed circuit boards are usually used in some simple electronic devices, while multilayer ceramic pcb are widely used in multiple high-end technology fields due to their higher integration and performance.

From a classification point of view, multilayer ceramic pcb can be divided from different angles. In terms of the number of layers, ceramic circuit boards are currently dominated by single and double panels.

According to materials, there are Al2O3 ceramics, AIN ceramics and BeO ceramics.

  • Alumina substrates are commonly used substrate materials in the electronics industry, with high strength and chemical stability and abundant raw material sources.
  • AIN ceramics have high thermal conductivity and expansion coefficients that match Si, but there are relatively few domestic production technologies and the price is high.
  • Although BeO has high thermal conductivity, its development is limited by toxicity.

According to the manufacturing process, it can be roughly divided into four types: HTCC, LTCC, DBC, and DPC.

  • DBC combines Al2O3 with Cu plate by high temperature heating.
  • DPC deposits Cu on Al2O3 substrate by direct copper plating technology.
  • LTCC is also called low-temperature co-fired multilayer ceramic substrate, and HTCC is also called high-temperature co-fired multilayer ceramic.
Multilayer ceramic pcb: its process and advantages

At present, these ceramic substrates have been maturely applied to various required fields, such as cooling sheets, high-power LEDs and other industries.

What are the manufacturing processes of multilayer ceramic pcb?

Common manufacturing processes of multilayer ceramic pcb:

  • One-time sintering multilayer method: After the ceramic blank is stamped and formed, the conductive layer is printed, and then laminated or printed with an insulating layer, followed by shape punching, and finally sintered and plated with precious metals.
  • Thick film multilayer method: After the ceramic blank is stamped and sintered, the conductive layer is printed, and the conductive layer and the insulating layer are printed repeatedly, and finally sintered.
Multilayer ceramic pcb: its process and advantages
  • High temperature co-firing technology (HTCC): High temperature sintering is adopted, and the sintering temperature is usually above 1500℃. This technology can produce ceramic circuit boards with high mechanical strength, which can make the package more solid and durable. However, high melting metals such as tungsten, molybdenum, and manganese have poor conductivity and sintering shrinkage is difficult to control.
  • Low temperature co-firing technology (LTCC): Sintering at 850-900 degrees Celsius, low-capacitance capacitors, resistors, coupling and other passive components are buried in the multilayer ceramic substrate, and low-impedance metals such as gold, silver, and copper are co-fired as electrodes, and then parallel printing is used to coat the circuit.
  • Direct pressing technology (DBC): Al2O3 is combined with Cu plate by high temperature heating. The production process is relatively simple and direct, and ceramic circuit boards with certain performance can be quickly produced.
  • Vacuum sputtering technology (DPC): Cu is deposited on Al2O3 substrate using direct copper plating technology, which can produce ceramic circuit boards with high precision.

What are the application fields of multilayer ceramic pcb?

(I) Covering high-end technology fields

multilayer ceramic pcb play a vital role in the aerospace field.

Ceramic materials do not decompose chemical bonds due to heat and ultraviolet radiation, do not absorb or release moisture in large quantities, and do not outgas in extreme vacuums. They have excellent temperature resistance and high reliability.

In satellite communication systems, navigation systems, and aircraft control systems, multilayer ceramic pcb ensure that circuits work stably in extreme environments.

Multilayer ceramic pcb: its process and advantages

In the field of medical equipment, multilayer ceramic pcb are widely used in imaging equipment and life support systems. The multilayer design can integrate more functions in a limited space, meeting the key needs of portable medical devices and compact designs.

In the field of automotive electronics, as cars develop towards electronicization and intelligence, the use of multilayer ceramic pcb is becoming more and more common. From engine management systems to entertainment systems, it improves circuit reliability, reduces weight, and improves overall performance.

In communication systems, especially in data centers and network equipment, multilayer ceramic pcb are widely used due to their superior signal integrity and electromagnetic interference shielding capabilities. High-speed signal transmission is possible while ensuring the quality and stability of data transmission.

In the field of high-performance computing, the high integration and high performance of multilayer ceramic pcb can meet the needs of large-scale data processing and high-speed computing.

(II) Significant advantages are widely used

multilayer ceramic pcb have a high degree of integration and can arrange more components and circuits in a limited space to achieve more complex circuit designs.

It has extremely high reliability and adopts professional manufacturing processes with good electrical and mechanical properties. Through strict quality control and testing, the stability and reliability of the circuit board are guaranteed.

Strong design flexibility allows more complex circuit layouts, providing space for innovation and technological progress. Designers can optimize circuit design and reduce the length of signal paths, thereby speeding up signal transmission.

What are the unique advantages of multilayer ceramic pcb?

(I) Excellent performance

multilayer ceramic pcb have many excellent properties. First, high thermal conductivity enables them to dissipate heat quickly and effectively, ensuring that electronic components maintain a stable temperature during operation.

The good thermal expansion coefficient makes the thermal expansion coefficient of the ceramic circuit board similar to that of the chip, which can reduce the impact of thermal stress on the chip. When the temperature changes, the thermal stress between the circuit board and the chip is reduced, which improves the reliability and service life of the electronic equipment.

The low-resistance metal film layer ensures good conductivity and reduces the loss of signal transmission.

The substrate has good solderability, which is convenient for the installation and welding of electronic components and improves production efficiency. Good insulation can effectively prevent circuit short circuits and ensure the safe operation of electronic equipment.

The low high-frequency loss makes the multilayer ceramic pcb have significant advantages in the field of high-frequency communication. In high-frequency signal transmission, the signal loss is low, which can ensure the quality and stability of the signal.

The high-density assembly feature enables the ceramic circuit board to integrate more electronic components in a limited space and realize more complex circuit design.

(II) Rich types suitable for different scenarios

  • Aluminum nitride ceramic circuit boards have the advantages of high thermal conductivity and expansion coefficient matching Si. Its high thermal conductivity can quickly dissipate the heat generated inside the device, making it an ideal packaging material for high-power electronic devices. In the field of high-power LED lighting, aluminum nitride ceramic circuit boards can provide good heat dissipation performance and extend the service life of LED lamps.
  • Alumina ceramic circuit boards are more common, cost-effective, with good insulation and moderate thermal conductivity. Alumina substrates are commonly used substrate materials in the electronics industry, with high strength and chemical stability, abundant raw material sources, and are suitable for a variety of technical manufacturing and different shapes.
  • Thick film ceramic circuit boards consist of gold and dielectric paste printed on a ceramic substrate and baked at a temperature slightly below 1000°C. Thick film ceramic PCBs can use gold or copper, and copper is used most due to its lower cost.
  • LTCC has excellent high frequency, high Q characteristics and high-speed transmission characteristics, good temperature characteristics, can adapt to high current and high temperature resistance requirements, easy to achieve multi-functionality and improve assembly density, and high reliability.
  • High temperature co-fired ceramic (HTCC) circuit boards use alumina and adhesives as well as plasticizers, solvents and lubricants. This method is most suitable for small circuit boards and carrier circuits. HTCC has the advantages of high mechanical strength, high wiring density, and stable chemical properties.

What is the future development of multilayer ceramic pcb?

(I) The market size continues to grow

In recent years, the market size of my country’s ceramic circuit board industry has shown a trend of continuous growth. According to statistics, the market size will be about 2.399 billion yuan by 2023, and the CAGR from 2015 to 2023 will be 19.1%. With the continuous development of the electronic information industry, the market demand for ceramic circuit boards as key electronic components will continue to grow.

(II) Technological progress drives development

With the rapid development of the new generation of information technology, downstream demand will inevitably be more diversified and more technologically advanced, which will put forward higher requirements on the R&D level and process level of ceramic circuit board industry manufacturers.

The downstream industries include integrated circuit packaging, LED, automotive electronics, aerospace and military electronic components. The scale development of the downstream market has created considerable new market capacity for the ceramic circuit board industry. At the same time, the structural upgrading of the downstream industry will help the technological progress of the ceramic circuit board industry.

(III) The global market has broad prospects

In 2023, the global multilayer printed circuit board market size is about 168.8 billion yuan, and it is expected that the market size will be close to 192.9 billion yuan by 2030, with a CAGR of 1.9% in the next six years.

At present, China is the world’s largest market for multilayer printed circuit boards, accounting for nearly 60% of the market share. From the perspective of the global market competition landscape, the sales volume, revenue, price market share and industry ranking of multilayer printed circuit boards of leading companies in the global market are constantly changing.

Conclusion:

In short, multilayer ceramic pcb have shown great potential in the electronics industry with their unique advantages. With the continuous advancement of science and technology, it will play a more key role in more fields and continue to inject new vitality into the innovation and development of electronic technology. BEST Techbology has always been committed to providing customers with high-quality products and professional services, and continuously promoting the development of the ceramic circuit board industry.

You may also like

Differences Guide, ceramic antenna vs pcb antenna
Thursday, September 12th, 2024

Antenna plays a vital role in wireless devices, and ceramic antenna and PCB antenna have their own characteristics. Ceramic antenna is small, low cost, easy to use, and has good anti-interference, waterproof, dustproof, lightning protection and other properties. PCB antenna is an important RF component and is also indispensable in wireless communication equipment.

What is a ceramic antenna?

Ceramic antenna is a miniaturized antenna suitable for Bluetooth devices. It uses a ceramic shell and has anti-interference, lightning resistance, waterproof and dustproof capabilities.

Differences Guide, ceramic antenna vs pcb antenna

It mainly uses GPS satellites to achieve navigation and positioning. It is divided into block ceramic antenna and multilayer ceramic antenna. Block antenna uses high temperature to sinter the entire ceramic body once and then prints the metal part of the antenna on the surface of the ceramic block.

Multilayer antenna firing uses low temperature co-firing to stack and align multiple layers of ceramics and then sinter at high temperature. The metal conductor of the antenna can be printed on each layer of ceramic dielectric layer according to design requirements, which can effectively reduce the size of the antenna and achieve the purpose of hiding the antenna.

Since the dielectric constant of ceramic itself is higher than that of PCB circuit board, and the dielectric loss is also smaller than that of PCB circuit board, the use of ceramic antenna can effectively reduce the size of antenna while ensuring antenna performance, and is more suitable for use in low-power Bluetooth modules.

Ceramic antennas are widely used in Bluetooth devices, such as Bluetooth headsets, smart watches, Bluetooth e-cigarettes, smart small appliances, smart medical, smart home products, etc. Its gain is generally 2dbi, and the reading distance can reach 2 meters. It is an industrial-grade product for indoor use, with an external size of 78mm×78mm×5mm.

What is a PCB antenna?

PCB antenna refers to the part on the PCB used for wireless reception and transmission.

Differences Guide, ceramic antenna vs pcb antenna

When transmitting, it converts the high-frequency current of the transmitter into electromagnetic waves in space; when receiving, it converts the electromagnetic waves intercepted from space into high-frequency current and sends them to the receiver. Usually set on Bluetooth or wireless transmission modules. For example, PCB antennas play an important role in ZM602 series Wi-Fi modules, achieving performance indicators such as gain > 2.0dBi, working bandwidth > 150MHz, S11 within bandwidth < -10dB, input impedance 50Ω, and standing wave ratio < 2.0.

The most common structure of PCB antenna is the inverted F antenna. The length of the antenna needs to meet the quarter free space wavelength of the transmitted signal. In actual design, it is often designed as a serpentine trace to reduce the occupied space.

The advantages of PCB antennas are small space occupation, low cost, no need to assemble the antenna separately, not easy to touch and damage, and convenient assembly of the whole machine; the disadvantages are that it is difficult to make a single antenna field round, the insertion loss is high, the efficiency is relatively low, and it is easy to be interfered by the motherboard.

What are the differences between ceramic antennas and PCB antennas?

  • (I) Difference in dielectric constant:

In terms of dielectric constant, ceramic antennas have obvious advantages. The dielectric constant of ceramic antennas is higher than that of PCB antennas, which enables ceramic antennas to gather and transmit electromagnetic wave signals more effectively.

The higher dielectric constant allows ceramic antennas to be more compact in design, effectively reducing the size of the antenna. In some miniaturized Bluetooth devices, such as smart watches and Bluetooth headsets, the high dielectric constant characteristics of ceramic antennas can meet the strict space requirements of the device, leaving more design space for other electronic components.

  • (II) Difference in dielectric loss:

Ceramic dielectrics also perform well in dielectric loss. Compared with PCB circuit boards, ceramic dielectrics have lower dielectric losses, which means that in low-power Bluetooth modules, ceramic antennas can transmit signals more efficiently while reducing energy loss.

The use of ceramic antennas in low-power Bluetooth modules is significantly better than PCB antennas, which can effectively extend the battery life of Bluetooth devices. The low dielectric loss characteristics of ceramic antennas can ensure that the device still maintains stable signal transmission when running for a long time.

  • (III) Difference in size and effect:

The size of ceramic antennas is generally comparable to that of 1210 packages. In practical applications, antennas of this size can well meet the design requirements of various miniaturized electronic devices. At the same time, the effect of ceramic antennas is stronger than that of PCB antennas. This is because the special structure and material properties of ceramic antennas make them more efficient and stable in signal reception and transmission.

In some Bluetooth audio devices with high signal quality requirements, ceramic antennas can provide clearer and more stable audio transmission effects, reducing signal interference and distortion. However, due to the limitations of its design and manufacturing, PCB antennas are often not as good as ceramic antennas in signal transmission effects.

What are the benefits of ceramic antennas?

Advantages:

Ceramic antennas take up little space, which makes them very advantageous in miniaturized electronic devices. For example, in wearable devices such as smart watches and Bluetooth headsets, more space can be left for other electronic components, making the design of the device more compact.

Its performance is good, and it can effectively reduce power consumption while ensuring signal strength. For example, in some low-power Bluetooth devices, ceramic antennas can extend the battery life of the device.

Ceramic antennas can also effectively improve the integration of the motherboard, reduce the antenna’s restrictions on ID, and introduce the design in the early stage of product design, so that it can be better integrated with the motherboard and improve the overall performance of the product.

Disadvantages:

The bandwidth of ceramic antennas is narrow, and it is difficult to achieve multi-band. This means that in some application scenarios that need to support multiple frequency bands at the same time, ceramic antennas may not meet the needs.

In some multifunctional wireless communication devices, it is necessary to support multiple frequency bands such as Bluetooth, Wi-Fi, GPS, etc. at the same time. Ceramic antennas may need to be used in conjunction with other antennas, which increases the complexity and cost of the design.

What are the benefits of PCB antennas?

Advantages:

PCB antennas take up less space and are especially suitable for electronic devices that have strict space requirements. For example, in some ultra-thin smartphones and laptops, PCB antennas can be directly integrated on the circuit board without taking up additional space.

Low cost is also an important advantage of PCB antennas. Since it can be made directly on the PCB board, no additional assembly process is required, which reduces production costs.

PCB antennas do not need to be assembled separately, are not easily damaged by touch, and are easy to assemble as a whole, which improves production efficiency.

Disadvantages:

It is difficult to make a single antenna field of a PCB antenna round, which will affect the coverage and stability of the signal.

High insertion loss means that the signal is lost more during transmission, reducing the strength and quality of the signal.

PCB antennas are easily interfered by other electronic components on the motherboard, which requires careful consideration and optimization during design and layout to reduce the impact of interference on the signal.

Application scenarios and selection of ceramic antennas and PCB antennas

According to different needs, PCB onboard antennas can be selected in environments without metal coverage, IPEX external antennas can be selected with metal coverage, and ceramic antennas can be selected if the space is not large.

Differences Guide, ceramic antenna vs pcb antenna

In actual applications, different usage environments and needs determine the choice of antenna type. If it is in an environment without metal coverage, PCB onboard antennas are an economical and convenient choice. PCB onboard antennas have the advantages of low cost, no need to assemble antennas separately, not easy to touch and damage, and easy assembly.

When in an environment with metal coverage, IPEX external antennas are more suitable. IPEX external antennas have good directional directivity, high efficiency, strong anti-interference ability, and can stay away from interference on the motherboard. Although it is costly and difficult to assemble, it can ensure stable signal transmission in a metal environment.

If the PCB board space is not large, ceramic antennas are an ideal choice. Ceramic antennas can effectively reduce the size of the antenna to achieve the purpose of hiding the antenna. At the same time, since the dielectric constant of ceramic itself is higher than that of PCB circuit board, it can better adapt to the design requirements of small space while ensuring performance.

In summary, when choosing an antenna, we need to comprehensively consider the specific use environment and needs and choose the most suitable antenna type to ensure that the device can achieve stable and efficient wireless communication.

Conclusion:

Ceramic antennas and PCB antennas each have their own characteristics and advantages. Understanding their differences will help you make the most appropriate decision when choosing wireless devices.

BEST Technology has many years of experience in manufacturing ceramic circuit boards. Its products can provide stable and reliable signal transmission in the fields of GPS navigation, Bluetooth devices, wireless LAN, and the Internet of Things.

You may also like

Ceramic PCB Manufacturers: Development History and Future
Thursday, September 12th, 2024

In today’s era of rapid technological development, ceramic PCBs have emerged in many fields with their excellent performance and unique advantages. Behind ceramic PCBs are a group of professional ceramic PCB manufacturers who are promoting the progress and development of the electronics industry with their unremitting efforts and superb skills.

Ceramic PCB Manufacturers: Development History and Future

Reasons for the development of ceramic pcb manufacturer

  • (I) Expansion of market size

In recent years, the ceramic PCB market size has shown a growing trend. According to statistics, the global ceramic substrate market size reached US$1.13 billion in 2022 and is expected to reach US$4.15 billion in 2029, with a compound annual growth rate (CAGR) of 18.23%.

In the Chinese market, the market size of China’s ceramic circuit board industry is about 2.399 billion yuan by 2023, with a CAGR of 19.1% from 2015 to 2023.

In terms of output, China’s ceramic substrate output accounted for about 35.9% of the world’s total in 2022, and is expected to reach 54.9% in 2029. Europe is the second largest market region, with a share of 33% in 2022 and an estimated 21.99% in 2029. Japan, Southeast Asia, South Korea and Taiwan are also important production areas.

  • (II) Promotion of technological progress

Technological innovation plays a vital role in promoting ceramic PCB manufacturers. In terms of the application of new materials, the research and development of new ceramic materials provides more options for ceramic PCBs.

In terms of production process improvements, ceramic PCB manufacturing technology includes steps such as pressing, welding, metallization and printing. By optimizing process parameters and process control, higher quality ceramic PCBs can be obtained.

The application of laser cutting and punching technology in the production of ceramic circuit boards improves processing accuracy and speed, and meets the requirements of small size and high density of electronic devices and semiconductor components.

What are the well-known ceramic pcb manufacturers?

BEST Technology:

  • Product features: A domestic manufacturer that focuses on the R&D and production of large, medium and small batches of ceramic circuit boards and prototypes, serving high-tech enterprises and scientific research institutions at home and abroad. Mainly focused on MCPCB, FR4 PCB, Ceramic PCB, Special PCB such as Heavy Copper (up to 20 OZ), and PCB assembly service.
  • Market share: Ranked among the top domestic ceramic substrate manufacturers, with a monthly production capacity of 100,000 sheets.
Ceramic PCB Manufacturers: Development History and Future
  • Technical advantages: Over 18 years of experience in the PCB industry. Proficient in DPC, AMB, DBC, LTCC, HTCC production processes, fully passed TS16949, ISO9001, ISO14001 certification. With the aim of “zero quality defects”, we provide high-quality products and services, with short delivery time and stable quality for ceramic boards.

What are the production processes of ceramic PCBs?

(I) Laser processing technology

Lasers play a vital role in ceramic PCB processing. Laser drilling has the advantages of high precision and high efficiency, and can meet the requirements of electronic devices and semiconductor components for micropore diameters ranging from 0.05 to 0.2 mm.

Ceramic PCB Manufacturers: Development History and Future

Laser cutting also has many advantages. First, it has high precision, fast speed, narrow slits, small heat-affected zone, and smooth cut surfaces without burrs.

(II) Other molding processes

  • Tape casting: The advantage is that it can produce large-area, thin-thickness and uniform ceramic substrates, which are suitable for large-scale production. However, tape casting has high requirements for equipment, and the viscosity and fluidity of the slurry need to be controlled during the process.
  • Powder pressing: Simple operation and low cost. However, the pressed ceramic substrate may have problems of uneven density and high porosity, which affect its performance.
  • Extrusion molding: Suitable for the production of long strip or tubular ceramic substrates with high production efficiency. However, the shape of the extruded ceramic substrate is relatively simple and the dimensional accuracy is relatively low.

(III) LAM process advantages

The LAM process has significant advantages in ceramic PCB manufacturing.

First, the bonding strength between the metal layer and the ceramic is high, up to 45 MPa (the strength of the ceramic sheet is greater than 1mm thick), the conductivity is good, and the heat is small when the current passes through.

Secondly, the thermal conductivity is high. The thermal conductivity of alumina ceramics is 20-35 W/mk, and the thermal conductivity of aluminum nitride ceramics is 170-230 W/mk, which is much higher than the thermal conductivity of the traditional aluminum-based circuit board MCPCB of 1 to 2 W/mk.

In addition, the insulation is good, and the breakdown voltage is as high as 20KV/mm. The thickness of the conductive layer can be customized arbitrarily within the range of 1μm-1mm, and the current can be designed according to the circuit module. The thicker the copper layer, the greater the current passing through.

The high-frequency loss is small, and high-frequency circuits can be designed and assembled; the dielectric constant is very small, and the line/spacing (L/S) resolution can reach 20μm, thus achieving short and thin devices.

It does not contain organic components, is resistant to cosmic rays, and has high reliability and long service life in the aerospace field; the copper layer does not contain an oxide layer and can be used for a long time in a reducing atmosphere.

What are the characteristics of ceramic pcb manufacturer?

  • (I) Obvious technical advantages

Ceramic PCB manufacturers have significant technical advantages. First of all, high thermal conductivity is one of the outstanding features of ceramic PCB. This enables ceramic PCB to effectively dissipate heat in high-power electronic equipment and improve the reliability and stability of the equipment.

Low thermal expansion coefficient is also an important technical feature of ceramic PCB. Its thermal expansion coefficient is close to that of silicon chips, which can save labor and materials and reduce costs. At the same time, when the temperature changes, it can reduce the stress caused by thermal expansion and contraction, and ensure the stability of the circuit.

High surface hardness makes ceramic PCB more durable and longer service life. Compared with traditional PCBs, ceramic PCBs are not easily scratched and worn, and can maintain good performance in harsh environments.

  • (II) Adapt to a variety of fields

Ceramic PCB has a wide range of application advantages in many fields.

In the field of LED lighting, the excellent heat dissipation performance of ceramic PCB can effectively reduce the temperature of LED chips, improve luminous efficiency and life. At the same time, ceramic PCB has good insulation and high pressure resistance, which ensures personal safety and equipment protection.

Ceramic PCB Manufacturers: Development History and Future

In the semiconductor field, the high thermal conductivity of ceramic PCB can quickly conduct heat away from semiconductor chips and improve cooling efficiency. In addition, the low thermal expansion coefficient and high surface hardness of ceramic PCB can adapt to the working environment of semiconductor coolers at different temperatures and ensure its stable performance.

  • (III) Clear market structure

At present, the ceramic PCB market presents a clear competitive pattern. In the global market, a few internationally renowned companies occupy a large market share. These companies have advanced technology and rich experience, and have strong strength in material research and development, production technology and market expansion.

The development opportunities for domestic manufacturers lie in the huge demand and policy support of the domestic market. With the rapid development of strategic emerging industries such as 5G communications, new energy vehicles, and high-end manufacturing, the market demand for ceramic PCBs will continue to grow.

At the same time, domestic manufacturers are also facing some challenges. On the one hand, international competitors have strong technical strength and brand influence, and domestic manufacturers need to increase investment in technological innovation and brand building. On the other hand, the production cost of ceramic PCBs is high, and domestic manufacturers need to continuously optimize production processes, reduce costs, and improve the cost performance of products.

What is the market prospect of ceramic PCB manufacturers?

(I) Strong policy support

As the core material of passive electronic components, electronic ceramics are an important material basis for electronic information technology.

In order to promote the development of the electronic ceramics industry, the state has issued a series of policies, such as “Opinions on Deepening the Reform of the Management System of the Electronic and Electrical Industry”, “The 14th Five-Year Plan for the Development of the Digital Economy”, “The 14th Five-Year Plan for the Development of Intelligent Manufacturing”, and “The 14th Five-Year Plan for the Development of China’s Electronic Components Industry”.

At the same time, the state has also strengthened quality management supervision of the PCB board industry, formulated strict quality standards and testing requirements, and supported enterprises to carry out ISO quality management system certification to improve product quality and competitiveness.

In terms of environmental protection, the Chinese government has adopted strict environmental protection policies to regulate the production and processing processes of the PCB board industry, restrict the use of hazardous substances, promote the recycling of resources and promote clean production, laying a solid policy foundation for the development of ceramic PCB manufacturers.

(II) Market demand growth

With the rapid development of downstream application fields such as new energy vehicles and 5G communications, the market demand for ceramic PCBs has shown a strong growth trend.

In the field of new energy vehicles, a large number of high-voltage and high-power devices contained in new energy vehicles, such as IGBT and MOSFET, have high requirements for heat dissipation.

Ceramic substrates have a good heat dissipation effect, which can dissipate the high heat in the power system in time to ensure the normal operation of large power loads, further increasing the use of PCBs for new energy vehicles.

In the field of 5G communications, the advent of the 5G era has made signal base stations more dense, with the number reaching 100 times that of 4G, including a series of software and hardware upgrades brought about by the iterative upgrade of terminal receiving devices.

As hardware for high-frequency transmission, the core of it is the circuit board. At present, the circuit board with the smallest transmission loss is the ceramic circuit board, which has long been widely used in the communications industry.

In the future, entering 2020, 5G will be expected to be commercially available. With the development of the new era of 5G, it is expected that by 2030, the domestic direct economic output will reach 6.3 trillion, and 8 million jobs will be created.

(III) Future development trends

  • Technological innovation: Ceramic PCB manufacturers will continue to increase their technological innovation efforts, develop new ceramic materials and advanced production processes.
  • Product upgrade: With the continuous improvement of PCB performance requirements in downstream application fields, ceramic PCB manufacturers will launch higher-end and more personalized products.
  • Market expansion: Ceramic PCB manufacturers will actively expand domestic and foreign markets, strengthen cooperation with downstream customers, and increase the market share of products. In the international market, domestic manufacturers can enhance brand awareness and influence and expand overseas markets by participating in international exhibitions and cooperating with internationally renowned companies.

You may also like

What is ceramic material for PCB?
Monday, September 9th, 2024

The top ten commonly used ceramic materials:
Common ceramic circuit board materials mainly include 96 aluminum oxide (Al2O3), 99 aluminum oxide (Al2O3), zirconium oxide (ZrO2), aluminum nitride (AlN), silicon carbide (SiC), silicon nitride (Si3N4), piezoelectric ceramics, diamond, sapphire, toughened ceramics (ZTA).

Ceramic PCB Material

Ceramic PCB Material

Uncommon ceramic circuit board materials
Uncommon ceramic circuit board materials mainly include silicon dioxide (SiO2), titanium zirconium oxide (ZrTiO4), boron nitride (BN), boron carbide (B4C), magnesium oxide (MgO), iron oxide (Fe2O3), cerium oxide (CeO2), silicon nitride (Si3N4), yttrium zirconium oxide (Y2O3-ZrO2), yttrium aluminum oxide (Y3Al5O12), titanium oxide (TiO2), silicon zirconium oxide (ZrSiO4), tungsten carbide (WC), titanium carbide (TiC), titanium nitride (TiN), silicon nitride (SiOxNy).

Alumina ceramic materials

Alumina ceramic materials

1). 99 alumina
99 alumina refers to alumina materials with a purity of 99% or higher. It is usually made of chemically pure alumina or high-purity alumina as raw materials, and is made through multiple processes such as high-temperature calcination, crushing, molding, and sintering. Compared with 96 alumina, 99 alumina has higher chemical purity, density and hardness, as well as better high-temperature stability and corrosion resistance.


99 alumina is widely used in electronics, machinery, chemical industry, aerospace and other fields. In the electronics field, 99 alumina is usually used to manufacture high-frequency electronic components, integrated circuit packaging, dielectrics and other devices; in the mechanical field, 99 alumina is mainly used to manufacture high-hardness ceramic tools, bearing balls, etc.; in the chemical field, 99 alumina can be used to manufacture catalysts and adsorbents; in the aerospace field, 99 alumina is often used to manufacture high-temperature structural parts, aircraft engine parts, etc.

2). 96 alumina
96 alumina, also known as industrial alumina or α-alumina, is a high-purity ceramic material. Its chemical formula is Al2O3, which belongs to oxide ceramics. 96 alumina is usually made of alumina powder through pressing, molding, sintering and other processes. The “96” here means that its aluminum oxide purity reaches more than 96%. 96 alumina has the characteristics of high hardness, high strength, high wear resistance, and good high temperature stability. It is widely used in the manufacture of ceramic products, refractory materials, abrasives, electronic devices and other fields.

Advantages of 99 alumina substrate:

High purity, usually reaching a purity level of 99.99%, excellent electrical properties, high dielectric constant and low dielectric loss.
Good high temperature stability, can work stably in high temperature environment, and can usually withstand temperatures up to 1700℃.
High mechanical strength, high strength, high hardness, not easy to be damaged, and can withstand greater force and pressure.
It has excellent corrosion resistance, is not corroded by most chemical substances, and is suitable for chemical media such as acids and alkalis.
It can be prepared into a thinner substrate, which is conducive to the preparation of microelectronic devices.

Advantages of 96 alumina substrate:
Cheaper than 99 alumina substrate, the cost is relatively low.
It is easier to process than 99 alumina substrate, and can be processed by cutting, drilling and other processing, which is convenient for preparing substrates of various shapes.
In some low-temperature and low-electric field strength applications, the dielectric constant and dielectric loss are lower than those of 99 alumina substrate, and it has better signal transmission performance.

Disadvantages:
Compared with 99 alumina substrate, 96 alumina substrate has lower purity, higher dielectric constant and dielectric loss.
It is prone to brittle fracture in high temperature environment.

Alumina ceramic application industry
99 alumina substrate: suitable for high-power LED, high-voltage integrated circuit, high-temperature sensor, high-frequency electronic components and other fields.
96 alumina substrate: suitable for low-power electronic components, sensors, capacitors, micro relays, microwave components and other fields.

Aluminum nitride ceramic material (AlN)

Aluminum nitride ceramic material (AlN)

Aluminum nitride ceramic is a high-performance ceramic material made of aluminum nitride powder sintered at high temperature. Its main component is aluminum nitride (AlN), which has the characteristics of high melting point (about 2800℃), hardness (9.0 to 9.5Mohs), strength and thermal conductivity. At the same time, it also has good insulation performance, chemical stability and high temperature resistance. Due to these characteristics, Sliton aluminum nitride ceramic circuit boards are widely used in microelectronics, optoelectronics, power electronics, aerospace and other fields.

Advantages

  1. High hardness: The hardness of aluminum nitride is close to that of diamond, which is more than 3 times that of traditional alumina. It can be used to make high-strength mechanical parts.
  2. High strength: Aluminum nitride has high strength, good wear resistance and corrosion resistance, and can be used to make high-load, high-wear and corrosion-resistant parts.
  3. High thermal conductivity: The thermal conductivity of aluminum nitride is very high, reaching 170-230W/(m·K), which is more than 4 times that of traditional aluminum oxide. It can be used to make high-power, high-frequency RF components.
  4. High insulation: The dielectric constant of aluminum nitride is low, about 1/3 of that of traditional aluminum oxide, and can be used to make high-frequency, high-precision microwave components.
  5. Anti-oxidation: Aluminum nitride has good anti-oxidation properties at high temperatures and can be used to make parts in high-temperature environments.

Application of aluminum nitride ceramics
Widely used in semiconductors, aerospace, electronics, military and other fields. For example, it is used to make high-frequency RF devices, microwave components, electronic ceramics, thermistors, high-temperature sensors, etc.

Zirconia ceramic material (ZrO2)

Zirconium oxide ceramic material is a ceramic material with high strength, high hardness, high temperature tolerance, corrosion resistance and good insulation performance. Its chemical formula is ZrO2, and it is usually stabilized to improve the stability and wear resistance of its lattice. Zirconia ceramic material has the characteristics of low thermal conductivity and high melting point, so it is widely used in industrial fields with strict requirements such as high temperature, high pressure, high speed and high precision, such as aerospace, electronics, medical and energy.
Advantages

  1. High hardness: The hardness of zirconia ceramics is very high, usually reaching HRA90 or above, even up to HRA95, which is more than 10 times that of steel.
  2. High strength: Zirconia ceramics have extremely high strength, which can reach 900MPa at room temperature, and can still maintain high strength at high temperature.
  3. Good wear resistance: Zirconia ceramics have high surface flatness and high hardness, so they have good wear resistance.
  4. Good corrosion resistance: Zirconia ceramics are chemically inert and not easily corroded by chemicals such as acids and alkalis, and can operate stably for a long time in harsh environments.
  5. Excellent insulation performance: Zirconia ceramics have excellent insulation performance and can be used for high-voltage insulation materials.
  6. Good high-temperature stability: Zirconia ceramics have extremely high melting points and high-temperature stability, and can be used for a long time in high-temperature environments.

Application of Zirconia Ceramics
Widely used in high-end manufacturing, electronics, aerospace, medical equipment, chemical industry and other fields, such as abrasives, high-temperature structures, pneumatic components, medical equipment, sensors, capacitors, etc.

Silicon carbide ceramic material (SiC)

Silicon carbide is a compound with the chemical formula SiC, which is composed of two elements: silicon and carbon. It is a ceramic material that is resistant to high temperature, corrosion, and extremely hard. It is also an industrial material widely used in extreme environments such as high temperature, high frequency, and high pressure. Silicon carbide has excellent mechanical, electromagnetic, and thermal properties, and is therefore widely used in semiconductors, disks, aerospace, and other fields. In addition, silicon carbide has good semiconductor properties and is also widely used in power electronics, optoelectronics, and other fields.
Advantages

  1. High hardness: The hardness of silicon carbide material is 5 times higher than that of steel and 3 times higher than that of aluminum.
  2. High strength: The strength of silicon carbide material is high, and the tensile strength can reach more than 400MPa.
  3. High temperature resistance: Silicon carbide material has a high melting point and can withstand high temperature thermal shock. The general use temperature is 1200℃-1600℃.
  4. Good oxidation resistance: Silicon carbide material can resist high temperature oxidation corrosion and can be used in air.
  5. Good wear resistance: Silicon carbide material has high hardness, low friction coefficient and good wear resistance.
  6. Good thermal conductivity: Silicon carbide material has excellent thermal conductivity, which is 2-3 times that of metal and can effectively dissipate heat.
  7. Good chemical stability: Silicon carbide material has good chemical stability and will not be corroded by acid, alkali, etc.

Silicon carbide ceramic PCB application
Widely used in high temperature, high pressure, high speed, high load, corrosion resistance and other fields, such as power, electronics, machinery, aviation, metallurgy and other industries.

Silicon nitride ceramic material (Si3N4)

Silicon nitride ceramic material is a high-temperature ceramic material based on nitrogen and silicon elements. It has excellent properties such as high strength, high hardness, high wear resistance, high temperature resistance, oxidation resistance, and corrosion resistance. Its chemical stability is extremely high and is not easily corroded by acids, alkalis, solvents, etc. The hardness of silicon nitride ceramic materials is comparable to that of diamond, or even higher, reaching about 24GPa. It is harder and less prone to wear than ordinary ceramic materials. At the same time, it has good insulation properties and thermal stability, and can work stably for a long time in high temperature environments.

Advantages of silicon nitride ceramic PCB materials

  1. High hardness: The hardness of silicon nitride ceramic materials is close to that of diamond, which can reach more than 30GPa.
  2. High strength: The bending strength of silicon nitride ceramic materials is high, which can reach more than 1000MPa.
  3. High wear resistance: Silicon nitride ceramic materials have good wear resistance and can be used to manufacture high-speed bearings and cutting tools, etc.
  4. High temperature resistance: Silicon nitride ceramic materials have high high temperature resistance and can be used in high temperature environments above 1000°C.
  5. Corrosion resistance: Silicon nitride ceramic materials have excellent corrosion resistance and can be used in some acidic and alkaline working environments.
  6. Lightweight: Silicon nitride ceramic materials are lighter than steel and can be used in lightweight design.

Silicon nitride ceramic PCB applications
Widely used in aerospace, optoelectronics, electronics, semiconductors, machinery and other fields.

Piezoelectric ceramic materials

Piezoelectric ceramic materials are ceramic materials with piezoelectric effect, which can deform under external electric field or mechanical stress, and generate electric charge when deformed. They are usually made of materials such as barium lead oxide (Pb(Zr,Ti)O3) or niobium lead oxide (Pb(Mg1/3Nb2/3)O3-PbTiO3) as the main components and sintered.

Advantages

  1. Piezoelectric effect: It can convert mechanical stress into electrical signals, or convert electrical signals into mechanical motion. This effect makes piezoelectric ceramic materials widely used in sensors, actuators, acoustic wave devices and other fields.
  2. Dielectric properties: With high dielectric constant and low dielectric loss, piezoelectric ceramic materials are used as capacitors, filters, etc. in electronic components.
  3. Mechanical properties: With high hardness, strength and wear resistance, piezoelectric ceramic materials are used in mechanical engineering.
  4. Thermal stability: With good thermal stability and high temperature resistance, it can work stably in high temperature environment.
    Piezoelectric ceramic PCB applications
    Widely used in sensors, actuators, acoustic wave devices, electronic components, mechanical engineering and other fields.

Diamond ceramic material

Diamond ceramic material is a new type of material made by sintering diamond powder and ceramic as raw materials at high temperature and high pressure. Because diamond has extremely high hardness, reaching Mohs hardness level 10, and has excellent wear resistance, corrosion resistance and high temperature oxidation resistance, diamond ceramic material has extremely high physical and chemical properties.

Advantages of diamond ceramic PCB material

  1. Extremely high hardness and strength, more wear-resistant, scratch-resistant and impact-resistant than ordinary ceramic materials;
  2. Excellent corrosion resistance, able to resist corrosive media such as strong acids and alkalis;
  3. Excellent high-temperature oxidation resistance, can be used for a long time at high temperature without damage;
  4. Excellent thermal conductivity and insulation performance;
  5. Easy to process into ceramic products of various shapes and sizes.

Application of diamond ceramic PCB
Diamond ceramic materials are widely used in high-end machinery, electronics, optics, medical and chemical fields, such as bearings, nozzles, cutting tools, hydraulic cylinders, electrical insulation parts, laser parts, etc.

Sapphire ceramic material

Sapphire ceramic material, also known as synthetic sapphire (Synthetic Sapphire), is a man-made single crystal material with excellent properties such as high hardness, high wear resistance and high corrosion resistance. The main component of sapphire ceramic material is aluminum oxide (Al2O3), which is prepared by melting or heat treatment at high temperature.

Advantages of sapphire ceramic material:

  1. High hardness: The hardness of sapphire ceramic material is second only to diamond, and it has high wear resistance.
  2. High corrosion resistance: Sapphire ceramic material has excellent corrosion resistance and can be used stably for a long time in harsh environments such as strong acid and strong alkali.
  3. High light transmittance: Sapphire ceramic material has high light transmittance and can be used in optics, laser and other fields.

You may also like

What problems can occur in the ceramic PCB etching process?
Thursday, August 15th, 2024

Ceramic PCB etching is a process that removes copper from a ceramic PCB by chemical methods to leave only the required copper traces on the board. This allows the creation of conductive paths between the components on the ceramic PCB that make up the circuit. Etching is a key step in ceramic PCB manufacturing, which can make ceramic PCB manufacturing efficient and up to standard.

During the ceramic PCB etching process, the chemical etchant solution dissolves the unwanted copper on the ceramic PCB laminate, while the resist (usually a polymer film) protects the copper traces from being etched away. After the etching is completed, only the desired copper circuit pattern remains on the ceramic PCB.

What are the reasons for uneven etching?

The reasons for uneven etching mainly include insufficient etching solution concentration, ‌high or low temperature, ‌long or short time, ‌incomplete film stripping on the substrate surface, ‌residual film, ‌uneven thickness of copper plating on the board surface when copper is plated on the entire board, etc. ‌

Uneven etching is one of the problems often encountered in the ceramic PCB etching process, ‌and its reasons are diverse and complex. ‌First of all, the problem of etching solution is an important factor leading to uneven etching. ‌If the concentration of the etching solution is insufficient, or the temperature is too high or too low, or the etching time is too long or too short, uneven etching may occur. ‌These problems can be solved by adjusting the concentration of the etching solution, controlling the etching temperature within an appropriate range, and ensuring that the etching time is within a reasonable range.

In addition, improper surface treatment of the substrate is also one of the reasons for uneven etching. ‌If the film on the substrate surface is not completely removed, there is residual film, or the thickness of the copper plating layer on the board surface is uneven when the copper is plated on the entire board, the uniformity of etching will be affected. ‌Similarly, if the ink is stained on the transmission roller of the etching machine when the board surface is corrected or repaired with ink, uneven etching may also occur.

How to avoid uneven etching?

Optimize the design of the etching tank: ensure the uniform distribution of the etching solution in the etching tank, design a reasonable liquid flow path, and improve the fluidity and uniformity of the etching solution.

Control the etching time: Reasonably control the etching time, avoid too long or too short etching time, and ensure uniform etching.

Stabilize the concentration of etching solution: Regularly monitor and adjust the concentration of etching solution to ensure the chemical composition of etching solution is stable.

How does the residue problem affect the etching quality?

Impact on etching uniformity: The presence of residues and impurities may have a serious impact on the success of the etching process, especially at the micro-nano scale, these residues and impurities may affect the uniformity of etching, resulting in a decrease in etching quality. ‌

Affect the uniformity and stability of etching solution: Residues and impurities may affect the uniformity and stability of etching solution, thereby affecting the quality of etching process. Factors such as etching solution concentration, pressure strength, temperature, speed and environment are all key factors affecting etching quality, and the presence of residues may interfere with the normal function of these factors, resulting in a decrease in etching quality. ‌

Affect the etching performance and quality of metal materials: The type and microstructure of metal materials have a significant impact on the etching process and quality. Alloy materials containing different elements will form micro-corrosion cells during the corrosion process, affecting the dissolution rate and uniformity of the metal corrosion process. The presence of residues may aggravate this effect, resulting in a decrease in etching quality. ‌

Requires additional cleaning and processing steps: In order to remove the residue, additional cleaning and processing steps may be required, which may increase production costs and time. ‌In addition, if the residue is difficult to remove or detect, it may also affect the quality and performance of the final product.

How to avoid the problem of residue?

Use pure etching solution: Select high-purity etching solution to ensure the purity and chemical activity of the etching solution.

Increase cleaning steps: Use a multi-step cleaning process to completely remove the etching solution and etching products to ensure that the surface is clean and residue-free.

Optimize process control: Strictly control parameters such as temperature, time, and concentration during the etching process to ensure stable etching effects.

What problems will over-etching cause?

Over-etching of ceramic PCBs will cause a series of problems, including excessive circuit etching, local corrosion, galvanic corrosion, etc.

Excessive circuit etching: When the circuit design is too detailed and the copper foil used is thick, it may cause excessive circuit etching, resulting in abnormal copper foil peeling strength, thus affecting the normal function of the circuit.

Local corrosion: includes filiform corrosion, crevice corrosion, and pitting corrosion. These types of corrosion are usually caused by chemical reactions between oxygen, moisture in the air and copper, or by corrosion in these crevices due to residual materials, hardware, or areas under components on the PCB.

Galvanic corrosion: When two different metals are coupled in a corrosive electrolyte, galvanic corrosion, also known as bimetallic corrosion, occurs.

In summary, excessive etching of ceramic PCBs may not only cause abnormal circuit function, but also cause a variety of corrosion problems, thus affecting the overall performance and life of the circuit board.

How to avoid excessive etching?

Reasonably control the etching time: According to the specific process requirements, reasonably control the etching time to ensure that the etching depth is moderate.

Adjust the etching solution concentration: According to the etching requirements, adjust the etching solution concentration to control the etching rate.

Optimize process parameters: During the etching process, strictly control process parameters such as temperature and pressure to avoid excessive etching.

How does graphic distortion affect the etching effect?

The main causes of graphic distortion include poor photoresist graphics, uneven distribution of etching solution, and improper etching process control.

Poor photoresist pattern: During the photolithography process, the photoresist pattern is unclear and uneven, which will cause the circuit pattern to be distorted after etching.

Uneven distribution of etching liquid: The uneven distribution of etching liquid in the etching tank will lead to different etching rates in different areas, resulting in inconsistent line width and shape, and pattern distortion.

Improper control of etching process: Improper control of process parameters such as temperature, time, and concentration during etching will lead to unstable etching rate and pattern distortion.

How to avoid image distortion?

Improve the quality of photoresist patterns: Use high-quality photoresist to ensure clear and uniform photolithography patterns and improve pattern accuracy.

Optimize etching tank design: Design a reasonable etching tank to ensure uniform distribution of etching liquid in the tank and reduce pattern distortion.

Strictly control process parameters: During the etching process, strictly control process parameters such as temperature, time, and concentration to reduce pattern distortion.

There are many common problems in the etching process of ceramic PCBs. These problems can be effectively solved by reasonably controlling the etching time, adjusting the etching liquid concentration, and using high-precision equipment. As a professional ceramic circuit board manufacturer, BEST Technology has 18 years of experience in ceramic PCB production. It can provide high-quality products and comprehensive technical support to ensure the success of the project and the reliable operation of the equipment.

You may also like

A Comprehensive Introduction to Ceramic Circuit Board
Wednesday, August 14th, 2024

Ceramic circuit board has almost completely integrated into our daily life, and it is filled with all kinds of electronic products we use every day. However, the production of ceramic circuit board is not so simple. The ceramic material itself is brittle, and it is easy to break in the process of through-hole, which easily leads to the scrapping of the whole board. However, this problem can’t stop the development of ceramic circuit board, and its position in the electronic industry is becoming more and more important. So do you know how ceramic circuit board was born?

History of ceramic circuit board

The history of ceramic circuit boards can be traced back to the early 1950s. At that time, with the appearance of transistors, single-sided ceramic circuit boards were developed centering on the United States. The main manufacturing method in this period is the direct etching of copper foil as the mainstream. From 1953 to 1955, Japan made paper-based phenolic copper foil substrates from imported copper foil for the first time, and it was widely used in radios and other aspects. Subsequently, the emergence of professional circuit board manufacturers in Japan made the manufacturing technology of single panel progress rapidly, and ceramic circuit boards also entered the development stage. ‌

In the development process of ceramic circuit board, it has experienced the transformation from single panel to double panel. Compared with single panel, double panel has wiring on both sides, and leads on both sides are connected through guide holes, which is suitable for more complex circuits. There is more flexibility in the design of double-panel circuits, because the wiring can be carried out on both sides and staggered with each other, which increases the complexity of circuit design but also improves the performance and function of the circuit. ‌

What are the problems faced by traditional pcb circuit boards? ‌

With the increasing variety of electronic products, it is necessary to use the circuit board in assembly, but the first problem that has to be faced is the heat dissipation of the circuit board. With the continuous expansion of the application scope of VLSI and the development trend of SMT, the design of organic laminated PCB is facing the challenge of heat dissipation, which is because the thermal conductivity of most ordinary PCBs is low. However, the thermal conductivity of ceramics is 90 times that of epoxy glass fiber, and it has excellent conduction cooling effect. Moreover, components on ceramic PCB usually have a lower junction temperature than ordinary PCB.

Secondly, there is another problem that needs to be faced, which is the CTE compatibility challenge. SMT technology, which became popular in the first half of 1980s, is affecting the whole electronic assembly industry. Because SMT technology directly welds electronic components on both sides of PCB, compared with THT (through hole technology), SMT technology has lower cost, higher reliability and easier automation, which can reduce the circuit size by five-sixths. Some reliable packages, such as LCC (leadless chip carrier), are very compatible with SMT requirements, but they usually cannot withstand the challenges brought by thermal cycling. Therefore, LCC is questioned from package reliability to on-board interconnection, because the CTE (coefficient of thermal expansion) incompatibility between LCC and PCB materials leads to welding failure. Therefore, ceramic PCB came into being. Ceramic PCB can provide the best solution to overcome thermal cycle failure, because they share compatible CTE with leadless ceramic chip carriers, and have higher thermal conductivity, higher stability and inertness.

Characteristics of ceramic circuit board

Compared with the traditional pcb based on phenolic resin (FR-4), glass fiber cloth (GPP), polytetrafluoroethylene (PTFE), epoxy glass fiber and polyimide, ceramic circuit board has superior thermal conductivity, high mechanical strength and durability, excellent electrical insulation and high dielectric strength.

With the development of multi-function, miniaturization, speediness and large-scale electronic equipment, stricter requirements are put forward for the durability, thermal conductivity, dielectric constant and electrical insulation of ceramic PCB. It can be predicted that the demand for ceramic PCB with aluminum nitride, alumina and glass ceramics as substrate materials will be increasing, and the market for ceramic circuit boards will be wider and wider.

What are the types of ceramic circuit boards?

At present, the common types of ceramic circuit boards are HTCC, LTCC, DBC, DPC, AMB, TFC (thin film ceramic board) and TPC (thick film ceramic board).

1. HTCC is an early developed technology. However, due to the high sintering temperature (1300~1600℃), the selection of electrode materials is limited, and the manufacturing cost is relatively expensive, which makes the development of HTCC slow.

2. Although LTCC reduces the co-firing temperature to about 850℃, it has the disadvantage that dimensional accuracy and product strength are not easy to control.

3. DBC combines Al2O3 with Cu plate by high temperature heating. Its technical bottleneck is that it is not easy to solve the problem of micro-pores between Al2O3 and Cu plate, which makes the mass production energy and yield of this product greatly challenged.

4. DPC technology is to deposit Cu on Al2O3 substrate by direct copper plating technology. Its technology combines material and thin film technology, and its products are the most commonly used ceramic heat dissipation substrate in recent years. However, its ability of material control and process technology integration is high, which makes the technical threshold for entering DPC industry and stable production relatively high. DBC&DPC is a professional technology that has only been developed and matured in recent years in China and can be mass-produced.

5. AMB ceramic copper clad laminate adopts AMB active brazing process, and the bonding force of copper layer is higher than DPC, which is above 18n/mm and as high as 21 N/mm.. AMB ceramic copper clad laminate usually has high bonding force, and the copper is usually thick, ranging from 100 μ m to 800 μ m, and it is rarely used for wiring or punching. Even if there are wires, it is very simple and the spacing is relatively wide.

6. TFC thin-film ceramic substrate generally adopts sputtering process to directly deposit metal layer on the surface of ceramic substrate. If photolithography, development, etching and other processes are assisted, the metal layer can also be patterned and prepared into lines. Because the deposition speed of sputtering coating is low (generally less than 1um/h), the thickness of the metal layer on the surface of TFC substrate is small (generally less than 1um), and ceramic substrates with high graphic accuracy (line width/line spacing less than 10um) can be prepared. It is mainly used for packaging small current devices in the field of laser and optical communication.

7. TPC thick film ceramics is a method of forming conductive lines and electrodes by screen printing, directly depositing slurry on the substrate and sintering at high temperature. This method is suitable for most ceramic substrates. After high temperature sintering, the material will form a firmly adhered film on the ceramic circuit board, and after repeated for many times, it will form a circuit with multi-layer interconnection structure containing resistance or capacitance. The advantage of this technology is that the process is simple, but the disadvantages are obvious: the conductors are gold paste and silver paste, limited by the size of conductive paste and screen, the minimum wire width of the product is difficult to be less than 100μm, and it is impossible to make three-dimensional graphics, so it is not suitable for the production of fine circuit boards.

Where is the ceramic circuit board used?

1. LED lighting

2. Power electronics

3. Aerospace

4. Automotive Electronics

5. Medical equipment

6. high frequency communication

7. chemical equipment

8. industrial electronics

Ceramic circuit boards are widely used in all walks of life because of their unique properties, especially in the electronic circuit industry.

Since its birth, ceramic circuit boards have been widely used. With the development of electronic industry, in order to adapt to the application of special industries, the types of ceramic circuit boards have become more and more diverse. As a professional manufacturer of ceramic circuit boards, BEST Technology is committed to providing high-quality products and comprehensive technical support. For different types of ceramic circuit boards, BEST Technology also has professional equipment and personnel to produce them. Choose a powerful manufacturer of ceramic circuit boards, and you will have no worries.

You may also like