pcb
Home > Blog

Archive for the ‘mcpcb’ Category

Board electronics with holes
Friday, October 4th, 2024

Board electronics with holes The types of vias in PCB include through holes, blind holes and buried holes, which have different characteristics and requirements in design and manufacturing. The selection of the appropriate via type should consider the number of PCB layers, wiring density, signal frequency, cost budget and production process. The via design should pay attention to avoid affecting the welding quality, preventing electrical short circuits, and saving costs in high-density packaging.

What are the holes in a PCB called?

What are the holes on PCB called? What are the holes in the circuit? The holes on PCB can be roughly divided into 3 types, screw holes (mounting holes), conductive holes (vias), and plug-in holes.

Screw holes: Screw holes are used for fixing.

Conductive holes: Conductive holes (also called vias) are used for conducting electricity just like circuits.

Plug-in holes: Plug-in holes are of course used to plug in various parts, such as diodes, transistors, capacitors, inductors, etc.

What is a through hole

What is a through hole? Through holes, also known as perforations, are holes in a PCB that go all the way through the board. Their main purpose is to provide electrical connections for component pins while allowing soldering on both sides of the board.

1.A via is a special through hole whose wall is metallized to achieve electrical connection between different layers on a circuit board. This type of hole is usually used to connect component pins to internal circuits, or to achieve electrical connection between different layers in a multi-layer PCB. Vias need to be metallized during the PCB manufacturing process, which usually includes drilling, desmearing, chemical copper plating, and electroplating.

What is a through hole

2.Non-conducting holes are the opposite of through holes. Their hole walls are not metallized, so they do not have electrical connection functions. These holes are mainly used for mechanical fixation, heat dissipation or identification purposes. Non-conducting holes are relatively simple in the PCB manufacturing process, and only drilling operations are required.

What is a through hole

What is a blind via?

A blind via is a hole that extends from one side of a PCB to a certain internal layer without penetrating the entire board. The emergence of blind vias is mainly due to the development of HDI technology, which provides circuit designers with greater flexibility and more compact layout. Blind vias are usually used to connect surface mount components (SMD) to internal circuit layers, or to connect circuits between different internal layers.

What is a blind via?

What are buried vias?

Buried vias are holes located inside the PCB that do not penetrate any side of the board. They are completely hidden inside the board and are used to connect circuits between different internal layers. Buried vias are especially useful in HDI boards because they can reduce the overall thickness of the board while maintaining electrical connections between internal circuits.

What is a microvia?

Microvia refers to a hole with a smaller diameter, usually at the micron level. The emergence of microvia technology enables PCB designers to achieve more complex circuit layouts in a smaller space. Microvias are often used in high-density, high-reliability electronic devices such as mobile phones and tablets. The manufacture of microvias requires high-precision drilling equipment and technology to ensure the accuracy and reliability of the holes.

What is a microvia?

What are Mounting holes?

What are Mounting holes?Locking holes are auxiliary holes used in the PCB manufacturing and assembly process to accurately locate and fix the circuit board. They are usually located at the edge or specific position of the PCB to ensure that the circuit board can be accurately aligned and fixed during manufacturing, testing and assembly. The locating holes do not participate in the connection of the circuit, but are essential to ensure the quality and performance of the circuit board.

What are Mounting holes?

What are Mounting holes

What are thermal vias?

Thermal vias are holes designed specifically for heat dissipation, usually large and can run through the entire PCB or multiple layers. Their role is to reduce heat buildup on the circuit board by increasing surface area and air flow, thereby improving the stability and reliability of the device. Thermal vias are particularly important in high-performance, high-power electronic devices.

What are thermal vias?

FAQ About board electronics with holes

How to solve the contradiction between manual routing and automatic routing of high-speed signals?

Most of the current powerful routing software’s automatic routing tools have set constraints to control the routing method and the number of vias. The routing engine capabilities and constraint setting items of various EDA companies are sometimes very different. For example, whether there are enough constraints to control the winding method of the serpentine, whether the routing spacing of the differential pair can be controlled, etc. This will affect whether the routing method generated by automatic routing can meet the designer’s ideas. In addition, the difficulty of manually adjusting the routing is also related to the capabilities of the routing engine. For example, the pushing ability of the routing, the pushing ability of the via, and even the pushing ability of the routing pair copper. Therefore, choosing a routing tool with strong routing engine capabilities is the solution.

Will adding test points affect the quality of high-speed signals?

As for whether it will affect the signal quality, it depends on the method of adding test points and how fast the signal is. Basically, the additional test points (not using the existing vias (via or DIP pins) as test points) may be added to the line or a small section of wire may be pulled out from the line. The former is equivalent to adding a very small capacitor to the line, while the latter is an additional branch. Both of these situations will have some impact on high-speed signals, and the extent of the impact is related to the frequency speed of the signal and the edge rate of the signal. The magnitude of the impact can be learned through simulation. In principle, the smaller the test point, the better (of course, it must meet the requirements of the test equipment) and the shorter the branch, the better.

Can you introduce some foreign technical books and data on high-speed PCB design?

Now the application of high-speed digital circuits includes communication networks and calculators and other related fields. In the communication network, the operating frequency of PCB boards has reached around GHz, and the number of layers is as many as 40 layers as far as I know. Due to the advancement of chips, the operating frequency of calculator-related applications, whether it is a general PC or server, has reached 400MHz (such as Rambus) or above. In response to the demand for high-speed and high-density routing, the demand for blind/buried vias, mircrovias and build-up process technology is gradually increasing. These design requirements can be mass-produced by manufacturers.

Does the design of rigid-flexible boards require special design software and specifications? Where can I undertake the processing of such circuit boards in China?

Can I use general PCB design software to design flexible printed circuits (Flexible Printed Circuit). The Gerber format is also used for FPC manufacturers to produce. Since the manufacturing process is different from that of general PCBs, each manufacturer will have its own restrictions on line width, line spacing, and aperture (via) based on their manufacturing capabilities. In addition, some copper foil can be laid at the turning point of the flexible circuit board for reinforcement. As for the manufacturer, you can search for “FPC” as a keyword on the Internet and you should be able to find it.

If the size of the circuit board is fixed, if the design needs to accommodate more functions, it is often necessary to increase the routing density of the PCB, but this may lead to increased mutual interference between the routings, and at the same time, the impedance cannot be reduced if the routing is too thin. Please introduce the techniques in the design of high-speed (>100MHz) high-density PCBs?

When designing high-speed and high-density PCBs, crosstalk interference does need to be paid special attention to because it has a great impact on timing and signal integrity. Here are a few things to note:

Control the continuity and matching of the characteristic impedance of the trace.

The size of the trace spacing. The spacing commonly seen is twice the line width. Through simulation, you can know the impact of trace spacing on timing and signal integrity and find the tolerable spacing. The results of different chip signals may be different.

Choose an appropriate termination method.

Avoid the same routing direction of the upper and lower adjacent layers, or even have traces overlapped up and down, because this kind of crosstalk is greater than the case of adjacent traces on the same layer.

Use blind/buried vias to increase the trace area. However, the production cost of the PCB board will increase. It is indeed difficult to achieve complete parallelism and equal length in actual implementation, but it should be done as much as possible.

In addition, differential termination and common mode termination can be reserved to mitigate the impact on timing and signal integrity.

The RF part, IF part, and even the low-frequency circuit part of the outdoor unit are often deployed on the same PCB. What are the material requirements for such PCB? How to prevent interference between RF, IF, and even low-frequency circuits?

Hybrid circuit design is a big problem. It is difficult to have a perfect solution.

Generally, RF circuits are laid out and wired as an independent single board in the system, and there will even be a special shielding cavity. Moreover, RF circuits are generally single-sided or double-sided boards, and the circuits are relatively simple. All of these are to reduce the impact on the distributed parameters of RF circuits and improve the consistency of RF systems. Compared with general FR4 materials, RF circuit boards tend to use high-Q substrates. The dielectric constant of this material is relatively small, the distributed capacitance of the transmission line is small, the impedance is high, and the signal transmission delay is small. In hybrid circuit design, although RF and digital circuits are made on the same PCB, they are generally divided into RF circuit area and digital circuit area, and laid out and wired separately. Shielding is used between ground vias and shielding boxes.

You may also like

What is aluminum base pcb board? How to choose?
Wednesday, September 25th, 2024

As a new type of PCB material, aluminum base pcb board is gradually becoming a popular choice in the electronics field with its excellent performance and wide application fields.

What is aluminum base material PCB?

Aluminum base material PCB (Printed Circuit Board) refers to a special type of PCB that uses aluminum as the substrate material. This PCB usually includes three main parts:

What is aluminum base pcb board? How to choose?
  • 1. Circuit layer: This is the part where the circuit pattern is installed, usually a layer of copper foil, which is etched to form a circuit path.
  • 2. Insulating thermal conductive layer: Located between the circuit layer and the metal base layer, this layer of material not only needs to provide electrical insulation between circuits, but also has good thermal conductivity to transfer the heat generated when the circuit is working to the metal base layer.
  • 3. Metal base layer: Usually a layer of aluminum plate, its function is to quickly dissipate the heat from the circuit layer.

Due to its good thermal conductivity, aluminum base PCB is very popular in application scenarios that require efficient heat dissipation, in LED lighting, power management, automotive electronics, communication equipment, and other electronic devices that require high power output and good thermal management.

Compared with traditional FR-4 fiberglass PCBs, aluminum base pcb boards can manage heat more effectively, thereby improving the reliability and life of electronic components. ‌

Why Aluminum is used in PCB?

There are several main reasons for using aluminum in PCBs (printed circuit boards):

1. Good heat dissipation performance

  • High thermal conductivity: Aluminum is an excellent thermal conductive material with a relatively high thermal conductivity. During the operation of the PCB, electronic components will generate heat, and the aluminum substrate can quickly conduct this heat away to avoid damage to electronic components caused by excessive local temperatures, thereby improving the stability and reliability of electronic equipment and extending the service life of components.
  • Uniform heat dissipation: The aluminum substrate can evenly distribute heat across the entire PCB, prevent hot spots from concentrating, and reduce the risk of failures caused by local overheating.

2. Higher mechanical strength

  • Vibration resistance: Aluminum has a certain rigidity and toughness, and can withstand the vibration and impact that electronic equipment may be subjected to during use, which can ensure that the PCB will not be easily damaged by external forces.
  • Dimensional stability: The dimensional changes of aluminum substrates are relatively small under different temperature and humidity conditions, which can maintain the structural stability of PCBs and ensure the welding reliability of electronic components.

3. Good insulation performance

  • The surface of the specially treated aluminum substrate has a good insulation layer, which can effectively prevent circuit short circuits and leakage. At the same time, the insulation layer can also withstand a certain voltage to meet the electrical insulation requirements of different electronic equipment.
  • Good compatibility with other insulating materials: It can be well combined with the packaging materials and welding materials of various electronic components to ensure the overall performance of electronic equipment.

4. Good processing performance

  • Strong processability: Aluminum substrates can be made using traditional PCB processing techniques, such as etching, drilling, cutting, etc., which is convenient and fast and can meet different design requirements.
  • Surface processability: The surface of the aluminum substrate can be processed in a variety of ways, such as copper plating, gold plating, tin spraying, etc., to improve welding performance and corrosion resistance.

5. Cost-effectiveness

  • Relatively low material cost: Aluminum is a common metal material with abundant resources and relatively stable prices. Compared with some high-performance heat dissipation materials, the cost of aluminum substrates is low, which can reduce the manufacturing cost of electronic equipment while ensuring performance.
  • High production efficiency: Due to the good processing performance of aluminum substrates, large-scale automated production can be achieved, which can improve production efficiency and further reduce costs.

How to choose aluminum base pcb board?

Choosing the right aluminum base pcb board is crucial to the performance and reliability of electronic equipment. In the selection process, multiple factors need to be considered, including glass transition temperature, heat resistance, flatness, thermal expansion coefficient and electrical performance.

(I) Glass transition temperature

Glass transition temperature (Tg) is one of the important parameters for measuring the heat resistance of PCB substrates. Generally speaking, substrates with higher Tg are more stable in high temperature environments and are not prone to deformation or damage.

What is aluminum base pcb board? How to choose?

For application scenarios with higher operating temperatures, aluminum base pcb boards with Tg higher than the circuit operating temperature should be selected. The Tg of the current mainstream FR-4 board is about 130-140 degrees. If the circuit operating temperature is close to or exceeds this value, it is necessary to consider choosing an aluminum substrate material with a higher Tg.

(II) Heat resistance

Aluminum-based PCB boards should have high heat resistance to ensure that they can still work normally in high temperature environments.

Generally, a heat resistance of 250℃/50S is required. This means that the board will not undergo significant performance changes under short-term high temperature exposure.

(III) Flatness

In SMT (surface mount technology), it is required to use boards with a small degree of curvature as much as possible. Aluminum base PCB boards with good flatness can ensure accurate installation of components and good welding quality. If the flatness of the board is poor, it may cause the components to be installed loosely, and even cause problems such as cold soldering and short circuits during the welding process.

(IV) Thermal expansion coefficient

The thermal expansion coefficient (CTE) is one of the key factors to consider when selecting aluminum base pcb boards. Due to the inconsistent thermal expansion coefficient in the thickness direction, it is easy to cause PCB deformation, and in severe cases, it will cause the metallized holes to break, resulting in damage to components.

The thermal expansion coefficient of the aluminum substrate is 50×10⁻⁶cm/cm℃, which is smaller than that of the general FR-4 board and closer to the thermal expansion coefficient of copper foil. When selecting, try to choose a board with a low thermal expansion coefficient and matching other components to reduce the thermal stress caused by the difference in thermal expansion coefficient.

(V) Electrical performance

For high-frequency circuits, materials with high dielectric constant and low dielectric loss are required. Insulation resistance, withstand voltage strength, and arc resistance must meet product requirements.

In communication electronic equipment, high-frequency amplifiers, filters and other circuits have high requirements for electrical performance, and aluminum base pcb boards with good electrical performance need to be selected to ensure accurate signal transmission and stability.

In summary, according to application requirements, factors such as glass transition temperature, heat resistance, flatness, thermal expansion coefficient and electrical performance can be comprehensively considered to select a suitable aluminum base pcb board to ensure the performance and reliability of electronic equipment.

Which is a major disadvantage of aluminum?

Although aluminum has many advantages, it also has some inherent disadvantages as a material that may limit its use in certain applications.

  • 1. Lower conductivity than copper: Although aluminum has a relatively high conductivity, it is still lower than copper.
  • 2. Easy to deform: Aluminum has a relatively low hardness, so it is more likely to undergo plastic deformation when subjected to external forces.
  • 3. Cold flow phenomenon: Aluminum becomes more brittle at low temperatures, and may exhibit cold flow (creep) phenomenon in high temperature environments, that is, slow deformation under constant load.
  • 4. Difficult welding: The surface of aluminum is prone to form an oxide film, which affects the quality of welding and makes aluminum welding more difficult than other metals.
  • 5. Corrosion resistance condition restrictions: Although aluminum itself has a certain degree of corrosion resistance, aluminum may accelerate corrosion in certain specific environments, such as salt water, alkaline solutions or halogens.
  • 6. Connection reliability: When aluminum is in direct contact with other metals such as copper, corrosion problems may occur in some cases due to electrochemical reactions, especially in humid environments, which may affect the long-term reliability of the connector.
  • 7. Large thermal expansion coefficient: Aluminum has a relatively high thermal expansion coefficient, which means that in an environment with large temperature changes, aluminum products may change in size due to thermal expansion and contraction, which may cause problems for applications that require precise matching.

What is the dielectric layer of aluminum PCB?

The dielectric layer of aluminum PCB is an insulating layer, which is located between the circuit layer and the metal layer and plays a role of isolation and insulation.

This insulating layer uses a thermally conductive insulating material that can quickly transfer the heat generated by the LED to the aluminum substrate. At the same time, the thermal resistance of this thermally conductive insulating material is a key factor that affects the efficiency of heat transfer.

What is aluminum base pcb board? How to choose?

In the design of aluminum substrates, the insulating layer is an indispensable part, which ensures the normal operation of the circuit while allowing heat to be effectively transferred to the aluminum base layer, thereby improving the thermal and mechanical properties of the entire structure.

Why don’t we use aluminum instead of copper?

The main reasons for not using aluminum instead of copper in PCBs (printed circuit boards) include the following:

  • ‌Conductivity difference‌: Copper has significantly better conductivity than aluminum. This means that in circuits that require good conductivity, using copper can provide more stable current transmission‌.
  • Thermal conductivity difference‌: Copper substrates have higher thermal conductivity than aluminum substrates, which means that copper performs better in transmission efficiency, heat dissipation, and service life.
  • ‌Resistance difference‌: Since copper has a higher density than aluminum, copper generally has lower resistance than aluminum. Using copper can reduce power loss and improve power transmission efficiency‌.
  • Weight difference‌: Copper has a higher density per unit area, resulting in copper PCBs weighing much more than aluminum PCBs under the same design. But if weight is not the main consideration, copper is widely used for its excellent electrical properties‌.
  • ‌Production process‌: The production process of aluminum substrate PCBs is relatively simple, but this does not mean that aluminum is a better choice. In some cases, although aluminum substrates may be produced faster, copper substrates are preferred in many applications due to their superior electrical properties‌.

In summary, although aluminum as a lightweight, low-cost material may have advantages in some cases, copper is still the preferred material in PCB manufacturing due to its better electrical conductivity, thermal conductivity, low resistance and applicability in most applications.

In short, as a new type of PCB material, aluminum base pcb board has the advantages of excellent heat dissipation, high mechanical strength, good electrical properties and environmental protection and recyclability. With the continuous development and progress of electronic technology, market demand will continue to increase. BEST Technoloby, as a professional aluminum substrate manufacturer, has rich manufacturing experience. The aluminum substrates produced have been tested by the market for a long time, and the service quality is in the first echelon. Choose us and you will get the best experience.

You may also like

Aluminum pcb suppliers, High Quality&Customization
Monday, September 23rd, 2024

In the rapidly developing electronics industry, aluminum substrates, as a key electronic component carrier, have a direct impact on the reliability and stability of electronic products through their quality and performance. Choosing a reliable aluminum pcb suppliers is crucial for electronics manufacturers.

What is an aluminum substrate?

Aluminum substrate, the full name of which is aluminum-based copper clad laminate, has good heat dissipation, electrical insulation and mechanical processing performance. It is widely used in LED lighting, power modules, automotive electronics, communication equipment and other fields.

Aluminum pcb suppliers, High Quality&Customization

In these fields, aluminum substrates can effectively dissipate the heat generated by electronic components quickly, thereby ensuring the normal working temperature of electronic components and extending their service life. At the same time, the high insulation performance of aluminum substrates can prevent the occurrence of safety problems such as electrical short circuits and leakage.

In addition, the mechanical processing performance of aluminum substrates also enables it to adapt to various complex electronic equipment structure design requirements.

How to choose an aluminum pcb suppliers?

1. Conduct market research

  • Before choosing an aluminum pcb supplier, you need to conduct sufficient market research. Understand the product quality, technical strength, production capacity, service quality and price of different suppliers, and make comparisons and analyses.
  • You can get more information about suppliers through online searches, industry exhibitions, and consulting industry insiders. At the same time, you can also refer to the evaluations and recommendations of other customers to understand the reputation and credibility of the supplier.

2. On-site inspection of suppliers

  • After determining some potential suppliers, you can conduct on-site inspections. On-site inspections can give you a more intuitive understanding of the supplier’s production equipment, production processes, quality control systems, and management levels.
  • During the on-site inspection, you can communicate with the supplier’s technical personnel and management personnel to understand their technical strength and service level. At the same time, you can also view the supplier’s product samples to understand the quality and performance of the products.

3. Conduct sample testing

  • Before selecting an aluminum pcb supplier, you can ask the supplier to provide samples for testing. Sample testing can give you a more intuitive understanding of the supplier’s product quality and performance, and whether it meets your needs.
  • When conducting sample testing, you need to test according to your actual use requirements, such as heat dissipation performance, electrical insulation performance, mechanical processing performance, etc. At the same time, you also need to check the appearance quality of the sample to ensure that there are no obvious scratches, stains, and defects.

How strong is BEST Technology?

BEST Technology has a strict quality control system. From raw material procurement to production and processing to product testing, every link is strictly controlled. And BEST Technology’s products have passed many international certifications, such as ISO9001 quality management system certification, UL certification, etc.

Aluminum pcb suppliers, High Quality&Customization

BEST Technology also has a strong technical R&D team, which can continuously launch new products and technologies to meet the needs of the market and customers. For example, the high thermal conductivity aluminum substrate they developed has a heat dissipation performance that is more than 30% higher than that of traditional aluminum substrates, and has been widely praised by customers.

BEST Technology also has advanced production equipment and process technology, using automated production lines and advanced surface treatment technology to ensure product production efficiency and quality. Their production capacity is in a leading position in the industry and can ensure on-time delivery of orders.

What are the classifications of aluminum-based PCBs?

‌Aluminum-based PCB‌ (aluminum-based copper-clad laminate) is mainly divided into the following categories:

  • General-purpose aluminum-based copper-clad laminate‌: The insulation layer of this type of aluminum-based copper-clad laminate is composed of epoxy glass cloth bonding sheets, which is suitable for the manufacture of general electronic products, providing basic electrical insulation and certain heat dissipation performance.
  • ‌High heat dissipation aluminum-based copper-clad laminate‌: Its insulating layer is composed of highly thermally conductive epoxy resin or other resins, which is designed to provide better heat dissipation and is suitable for high-power electronic devices.
  • ‌Aluminum-based copper-clad laminate for high-frequency circuits‌: The insulating layer of this type of copper-clad laminate is composed of polyolefin resin or polyimide resin glass cloth bonding sheet, which is particularly suitable for electronic devices that require high-speed signal transmission and high integration.

What are the characteristics of aluminum-based PCBs?

The characteristics of aluminum-based PCBs mainly include excellent heat dissipation, dimensional stability, insulation, durability, lightness and environmental protection. ‌

Aluminum pcb suppliers, High Quality&Customization
  • ‌Excellent heat dissipation‌: Aluminum-based PCBs have excellent thermal conductivity because they use aluminum as the base material, which can effectively transfer heat from heating devices or important devices, thereby improving the overall performance of the product‌.
  • ‌Dimensional stability‌: The dimensional stability of aluminum substrates is higher. Compared with printed boards made of insulating materials, the dimensional changes of aluminum substrates are smaller, which helps to improve the reliability and durability of products‌.
  • ‌Insulation‌: Aluminum substrates have good insulation properties and can provide the electrical isolation required by electronic devices. At the same time, they are hard and can replace easily broken ceramic plates, effectively reducing the actual area required for printed circuit boards, so that products do not need to install radiators, etc., thereby improving the heat dissipation of products and improving product efficiency and reducing costs.‌
  • Durability‌: Due to its high hardness, aluminum substrates can reduce the risk of accidental damage during production, handling and daily use, and provide strength, toughness and durability that glass fiber substrates cannot provide.‌
  • ‌Lightweight‌: Aluminum substrates enhance the strength and elasticity of products without adding extra weight, which helps to reduce the overall weight of products.‌
  • Environmental protection‌: Aluminum is non-toxic and recyclable, which helps to reduce the impact of electronic waste on the environment.‌

In summary, aluminum-based PCBs provide electronic products with multiple advantages such as efficient heat dissipation, dimensional stability, excellent electrical performance, durability, lightness and environmental protection through their unique physical and chemical properties, making aluminum-based PCBs widely used in high-end electronic devices.‌

What are the application scenarios of aluminum-based PCBs?​

The application scenarios of aluminum-based PCBs are very wide, mainly including the following aspects:

  • High-power LED lighting‌: Aluminum-based PCBs can quickly and effectively transfer the heat generated by LEDs to the external environment, reduce the impact of high temperature on the life of LED chips, and improve the life and reliability of lamps.
  • ‌Power supply equipment‌: Such as switching power supplies, DC/AC converters, voltage regulators and other high-power density power modules, aluminum-based PCBs can quickly dissipate heat to ensure stable operation of the circuit.
  • ‌Audio equipment‌: The heating elements in audio devices such as audio amplifiers, power amplifiers, and preamplifiers can be well managed by aluminum-based PCBs.
  • ‌Communication electronic equipment‌: Components in communication systems such as high-frequency devices, filters, signal transmission and reception circuits, etc., use aluminum-based PCBs to improve system reliability.
  • Computers and peripherals‌: Some areas on the motherboard, power supply modules, and hardware such as graphics cards may use aluminum-based PCBs to improve the heat dissipation effect.
  • Office automation equipment‌: Motor drivers and other components that require effective heat dissipation.
  • Automotive electronics‌: Including electronic speed regulators, ignition devices, power controllers and other vehicle-mounted applications.
  • ‌Industrial control field‌: High heat density circuit boards inside industrial control equipment such as frequency converters and inverters.

Aluminum-based PCBs are widely used in many fields due to their excellent heat dissipation and electrical insulation properties, especially in situations where efficient heat dissipation and stable operation are required.

Choosing a high-quality aluminum pcb supplier is crucial for electronics manufacturers. When choosing a supplier, it is necessary to consider the key points comprehensively. Choose a suitable aluminum pcb suppliers through market research, field visits and sample testing.

You may also like

What is aluminum PCB board?
Monday, September 23rd, 2024

In today’s era of rapid technological development, the performance and reliability of electronic equipment are attracting more and more attention. As an important carrier of electronic components, aluminum pcb board plays a vital role in the field of electronics.

What is aluminum PCB?

Aluminum PCB board is a metal-based copper-clad board with good heat dissipation function. This board is mainly used for high-end applications. When designed as a double-sided board, the structure is a circuit layer, an insulating layer, an aluminum pcb board, and then an insulating layer and a circuit layer.

What is aluminum PCB board?

In rare cases, aluminum pcb board can also be designed as multi-layer boards, which are formed by laminating ordinary multi-layer boards with insulating layers and aluminum pcb board.

The unique advantage of aluminum pcb board lies in their excellent heat dissipation performance. The power device is mounted on the circuit layer on the surface. The heat generated by the device during operation is quickly transferred to the metal base layer through the insulating layer, and then the metal base layer transfers the heat away to achieve effective heat dissipation of the device.

This design enables the aluminum pcb board to minimize thermal resistance and has excellent thermal conductivity. At the same time, compared with traditional materials, aluminum pcb board can reduce volume, extend life, and improve power density and reliability while carrying higher currents.

In addition, aluminum pcb board also meet RoHS requirements, are more suitable for SMT processes, and effectively handle heat diffusion in circuit design schemes, reduce the assembly of heat sinks and other hardware, reduce costs, improve the optimal combination of power circuits and control circuits, replace fragile ceramic substrates, and obtain better mechanical durability.

How do you make aluminum PCB?

The production process of aluminum pcb board mainly includes the following steps:

  • Cutting: First, cut the aluminum pcb board material according to the design requirements.
  • Drilling: Drill holes on the aluminum pcb board according to the circuit design requirements to prepare for subsequent circuit production.
  • Dry film photo imaging: Cover the dry film on the aluminum pcb board and transfer the circuit pattern to the aluminum pcb board through photo imaging technology.
  • Board inspection: Check whether the circuit pattern on the aluminum pcb board meets the design requirements.
  • Etching: Use chemical etching to remove the part not covered by the dry film to form a circuit pattern.
  • Etching inspection: Check the etched aluminum pcb board again to ensure the accuracy of the circuit pattern.
  • ‌Green paint‌: Apply protective paint to prevent the circuit from being oxidized and corroded.
  • Character‌: Print necessary logos and information on the aluminum pcb board.
  • Green inspection‌: Check the aluminum substrate after applying protective paint to ensure quality.
  • Hinning‌: Spray tin on the aluminum substrate to improve welding performance.
  • Surface treatment‌: Treat the surface of the aluminum substrate, such as applying thermal conductive slurry to optimize heat dissipation performance.
  • ‌Punching‌: Cut the aluminum substrate as needed to form the final product shape.
  • ‌Final inspection‌: Perform final quality inspection on the finished aluminum substrate.
  • ‌Packaging and shipment‌: Pack qualified aluminum substrates and prepare for shipment.

This series of steps ensures that the production quality and performance of the aluminum substrate meet the design and use requirements. Aluminum substrates are widely used in high-end electronic devices due to their excellent heat dissipation and machining performance.

How much does aluminum PCB cost?

The cost of aluminum substrate PCB is about 230 yuan to 400 yuan per square meter. ‌

The cost of aluminum substrate PCB is affected by many factors, including board type, production process, testing cost and other additional expenses.

What is aluminum PCB board?

Aluminum substrate PCB is a metal-based copper-clad board with good heat dissipation function. This board is highly praised in certain specific application scenarios due to its efficient heat dissipation performance, but correspondingly, its cost is usually much higher than other types of PCB.

‌Board cost‌ is one of the main costs of aluminum substrate PCB. The board cost used in aluminum substrate is higher because of its special materials and manufacturing process.

‌Processing cost‌ also occupies a certain proportion. The processing process of aluminum substrate includes cutting, drilling, electroplating, lamination and other links. The equipment and process requirements of each link will affect the final cost.

‌Quality inspection cost‌ is also not to be ignored. Strict quality inspection is required during the production process, including environmental adaptability testing, electrical performance testing, etc. The number and strictness of these inspection items will also affect the production cost.

In summary, the cost of aluminum substrate PCB is affected by many factors, roughly between 230 yuan and 400 yuan per square meter, and the specific price will vary according to specific needs and production conditions.

What are the layers of aluminum PCB?

The number of layers of aluminum-based PCB can be single-sided, double-sided or multi-layer. ‌

  • ‌Single-sided aluminum substrate‌: On this type of PCB, the parts are concentrated on one side and the wires are concentrated on the other side. Since the wires only appear on one side, this PCB is called a single-sided aluminum substrate.
  • Double-sided aluminum substrate‌: There are wiring on both sides of the circuit board, but to use the wires on both sides, there must be appropriate circuit connections between the two sides.
What is aluminum PCB board?
  • Multilayer board‌: In order to increase the area that can be wired, multilayer boards use more single-sided or double-sided wiring boards. The printed circuit board that is alternately connected by the positioning system and insulating adhesive materials and the conductive patterns are interconnected according to the design requirements becomes a four-layer or six-layer printed circuit board, also known as a multilayer printed circuit board.

How thick is aluminum clad PCB?

The thickness of aluminum clad PCB usually ranges from 0.12mm to 0.18mm, with an error of ±0.01mm.

The thermal conductivity of aluminum substrate is one of the important indicators for evaluating its quality, and the thermal conductivity of aluminum substrate is generally 2.0-0.1, which means that the thermal conductivity of aluminum substrate is excellent and can effectively improve the heat dissipation efficiency of circuit boards.

In addition, the thickness of the insulation layer of aluminum substrate is usually 0.003 to 0.006 inches, which is composed of UL-certified aluminum plate cladding and insulating materials, while the base layer is a metal substrate, usually aluminum or copper.

What are the disadvantages of aluminum PCB?

The disadvantages of aluminum PCB mainly include high cost, high process difficulty, non-uniform board material, and easy problems in pressure resistance and electrical strength. ‌

  • High cost‌: The cost of aluminum PCB is relatively high, usually more expensive than other types of PCBs, and the price accounts for more than 30% of the total cost of the product.
  • High process difficulty‌: When making aluminum PCB, due to its special material and structure, the process of making double-sided boards is difficult, and during the manufacturing process, problems in pressure resistance and electrical strength are also easy to occur.
  • ‌Inconsistent board materials‌: There is no unified international standard for the material specifications of aluminum PCBs. There are multiple specifications such as CPCA industry standards, national standards and international standards, which increases the complexity of selection and use‌.
  • Problems with withstand voltage and electrical strength‌: Aluminum substrates are prone to fail to meet the withstand voltage index, which may lead to safety problems during use‌.

Why is aluminum no longer used in integrated circuits?

The main reason why aluminum is no longer used in integrated circuits is that its high resistivity and easy electromigration are gradually exposed with the increase of chip integration and the reduction of feature size, which limits its application in high-performance chips. ‌

Aluminum is one of the earliest widely used metals in semiconductor chips. Due to its good conductivity and relatively low cost, it has been widely used as an interconnect metal in early integrated circuits.

However, with the increase of chip integration and the reduction of feature size, the shortcomings of aluminum gradually emerge. In addition, aluminum wires may experience electromigration under the action of long-term current, which will cause the failure of integrated circuits.

As an alternative material, copper has lower resistivity and higher electromigration resistance than aluminum, can carry larger current in thinner metal wires, and is more reliable under high-speed current conditions.

With the continuous development of electronic technology, aluminum substrates are also constantly innovating and developing. In the future, aluminum substrates will pay more attention to product quality, performance and environmental protection, and provide more reliable support for the development of electronic equipment. BEST Technology focuses on circuit board design and production, and has many years of experience in aluminum substrate manufacturing. Choosing BEST Technology will provide you with the best service.

You may also like

Aluminum pcb manufacturer, High Quality&Customization
Friday, September 20th, 2024

In today’s rapidly developing electronic technology, aluminum substrates, as a key electronic component carrier, play a vital role. Aluminum substrate manufacturers are an indispensable backbone in this field. They provide high-quality products to the electronics industry with advanced technology and strict quality control.

Reasons for the development of aluminum substrate

The continuous updating and improvement of aluminum substrate technology has provided a strong driving force for the development of manufacturers. In terms of thermal conductivity, in order to meet the application needs of different fields, the thermal conductivity of aluminum substrates has been continuously improved, and has now reached more than 180W/mK.

Aluminum pcb manufacturer, High Quality&Customization

In terms of molding and processing technology, commonly used molding processes include cutting, punching and bending, and the continuously optimized molding and processing technology has improved the production efficiency and product quality of aluminum substrates.

In addition, technological innovation has also promoted the diversified development of aluminum substrate products, such as ultra-thin aluminum substrates, high-frequency and high-speed aluminum substrates, flexible aluminum substrates, composite functional aluminum substrates, environmentally friendly aluminum substrates and other new products have emerged continuously, meeting the needs of different industries and application fields.

What are the types of aluminum substrates?

(I) Flexible aluminum substrate

The material system of flexible aluminum substrate is usually a polyimide resin system with ceramic fillers, which can provide excellent electrical insulation, flexibility and thermal conductivity.

For example, in some portable electronic devices that require special shapes, flexible aluminum substrates can better adapt to the internal space of the device, eliminating expensive fixtures, cables and connectors, and reducing overall costs.

At the same time, due to its good flexibility, it can also play an important role in some bendable electronic products, such as foldable displays.

(II) Multilayer aluminum substrate

In the high-performance power supply market, multilayer aluminum substrates are made of multiple layers of thermally conductive dielectrics. These structures have one or more layers of circuits buried in the dielectric, and blind holes are used as thermal vias or signal paths.

Aluminum pcb manufacturer, High Quality&Customization

Although it is more expensive and less efficient to transfer heat with a single-layer design, they provide a simple and effective heat dissipation solution for more complex designs. For example, in some high-end server power supplies, industrial power supplies and other fields, the heat dissipation requirements are extremely high. Multilayer aluminum substrates can meet the heat dissipation needs of these complex electronic devices and ensure the stable operation of the equipment.

(III) Through-hole aluminum substrate

In the most complex structures, a layer of aluminum can form the “core” of a multi-layer thermal structure.

Before lamination, the aluminum is pre-plated and filled with dielectrics. Thermal materials or sub-assemblies can be laminated to both sides of the aluminum using thermal bonding materials. Once laminated, the completed assembly is similar to a traditional multi-layer aluminum substrate through drilling.

The plated through-holes pass through the gaps in the aluminum to maintain electrical insulation. Alternatively, the copper core can allow direct electrical connection as well as insulating through-holes. This complex structure makes it play an important role in some high-end electronic devices with extremely high requirements for electrical insulation.

What is the dielectric material of aluminum PCB?

The dielectric material selection of aluminum PCB is diverse, designed to meet different performance requirements. Epoxy resin is widely used for its toughness and heat resistance, while polyimide is known for its high temperature stability and chemical stability.

Polystyrene is favored for its low dielectric constant and dielectric loss tangent, while acrylic ester is selected for its excellent light transmittance. In addition, ceramic materials such as alumina, silicon nitride, zirconium oxide, etc. are also commonly used dielectric materials for aluminum PCBs due to their excellent insulation, thermal conductivity, oxidation resistance, and high-temperature stability.

Different dielectric materials have different dielectric constants and thermal properties, which are particularly important for applications in high-frequency and high-temperature environments. Polytetrafluoroethylene (PTFE) and ceramic substrates are particularly suitable for high-frequency and high-temperature environments due to their high temperature resistance and low dielectric constant.

In summary, there are a wide variety of dielectric materials for aluminum PCBs, including epoxy resin, polyimide, polystyrene, acrylic ester, alumina, silicon nitride, zirconium oxide, etc. These materials are selected based on their respective advantages to meet the performance requirements of aluminum PCBs in specific applications.

What is the thermal resistance of aluminum PCB?

The thermal resistance of aluminum PCBs ranges from 1℃/W to 2℃/W. ‌This data is in sharp contrast to the thermal resistance of FR4 PCBs, which ranges from 20℃/W to 22℃/W.

Aluminum pcb manufacturer, High Quality&Customization

This shows that aluminum PCB is significantly better than FR4 PCB in heat dissipation performance. Aluminum material has good heat dissipation effect, which can effectively reduce the heat generated by electronic equipment during operation and keep components running at a suitable working temperature, thereby improving the stability and service life of the equipment.

What are the production processes of aluminum substrates?

  • First, the material is cut, and the incoming material inspection is strengthened to ensure that the sheet with a protective film on the aluminum surface is used. After cutting, there is no need to bake the sheet, and it should be handled with care, paying attention to protecting the protective film on the aluminum base surface.
  • Next is drilling. The drilling parameters are the same as those of FR-4 sheet materials. At the same time, the aperture tolerance must be strictly controlled, especially for 4OZ-based Cu. Pay attention to controlling the generation of flash, and drill with the copper skin facing up.
  • Then enter the dry film optical imaging link, including incoming material inspection, grinding, filming, board clapping, exposure and development.
  • When inspecting the board, the circuit surface must be inspected according to MI requirements for various contents, and the dry film on the aluminum base surface must not have film falling or damage.
  • In the etching process, since the copper base is generally 4OZ, etching is difficult. After the aluminum surface without protective film is taken out of the film stripping liquid, it should be washed with water in time to prevent the alkali solution from biting the aluminum surface.
  • The production process of the green oil process is grinding the plate (only brushing the copper surface) → silk screen printing green oil (first time) → pre-baking → silk screen printing green oil (second time) → pre-baking → exposure → development → grinding machine pickling soft brush → post-curing → next process.
  • Before spraying tin, tear off the protective film of the aluminum substrate with protective film, hold the edge of the plate with both hands, and it is strictly forbidden to touch the inside of the plate directly with your hands. Pay attention to the operation to prevent scratches.

What are the characteristics of aluminum substrate manufacturers?

(I) Good processing and production effect

Aluminum substrate manufacturers can make full use of the material properties of the aluminum substrate itself according to the actual processing size to bring better processing and production effects for building material design.

(II) Stable and reliable quality

Aluminum substrate manufacturers focus on product quality and stability, and use high-quality raw materials and strict production standards. They have a complete production system and quality control system to ensure the quality and stability of products.

(III) Advanced production technology

Aluminum substrate manufacturers use advanced production technology and equipment to ensure product accuracy and stability. They have professional sales and technical teams that can provide high-quality products and technical support.

(IV) Energy saving and environmental protection

Aluminum substrate manufacturers focus on the energy saving and environmental protection of their products, and use energy-saving and environmentally friendly materials and production processes. They have strong R&D and technical strength, and continue to launch new energy-saving and environmentally friendly products and technological innovations.

What is the market prospect of aluminum substrate manufacturers?

The continuous emergence of new generation electronic products, such as smart phones, tablets, wearable devices, etc., has higher and higher requirements for heat dissipation performance and thinness. Aluminum substrates, as a metal-based copper-clad laminate with good heat dissipation function, just meet these needs.

The development of emerging technologies such as 5G has also brought new opportunities to the aluminum substrate market. Aluminum substrates, as a metal-based copper-clad laminate with good heat dissipation and electrical properties, just meet the needs of 5G communication technology.

The trend of lightweight vehicles and the expansion of the new energy vehicle market have also brought new opportunities to the aluminum substrate market. Aluminum substrates, as a metal-based copper-clad laminate with the characteristics of lightweight, high strength and corrosion resistance, just meet the needs of lightweight vehicles.

In short, aluminum substrate manufacturers play an important role in the electronics field. They provide high-quality aluminum substrate products to the electronics industry with advanced technology, strict quality control, continuous innovation and research and development, and good customer service.

You may also like

What is an aluminum pcb? How is it made?
Friday, September 20th, 2024

In today’s era of rapid technological development, the performance and reliability of electronic equipment are attracting more and more attention. Among many electronic components, aluminum pcb have become an indispensable part of the electronics field with their excellent performance and wide application.

How do you make Aluminum PCB?

What is an aluminum pcb? How is it made?
  • 1. Cutting: Cut large-sized incoming materials into the size required for production. The process is picking materials-cutting.
  • 2. Drilling: Positioning and drilling holes in the plate to assist the subsequent production process and customer assembly. The drilling process is pinning-drilling-board inspection.
  • 3. Dry/wet film imaging: The part required for making the circuit is presented on the plate. The dry/wet film imaging process is grinding the plate-filming-exposure-development.
  • 4. Acid/alkaline etching: After dry/wet film imaging, the required circuit part is retained and the excess part outside the circuit is removed. The acid/alkaline etching process is etching-film stripping-drying-board inspection.
  • 5. Silkscreen solder mask and characters: solder mask is to protect the circuit that does not need soldering, preventing tin from entering and causing short circuit. Characters are used for marking. The silkscreen solder mask and character process is silkscreen – pre-baking – exposure – development – characters.
  • 6. V-CUT, gong board: V-CUT is to cut the single PCS circuit and the whole PNL board to leave a small part connected for easy packaging and removal. The gong board is to remove the excess part of the circuit board. The process of V-CUT and gong board is V-CUT – gong board – tearing the protective film – removing the flash.
  • 7. Test, OSP: Circuit test is to detect whether the completed circuit is working normally. Voltage resistance test is to detect whether the completed circuit can withstand the specified voltage environment. OSP allows the circuit to be better soldered. The test, OSP process is circuit test – voltage resistance test – OSP.
  • 8. FQC, FQA, packaging, shipment: FQC conducts full inspection and confirmation of the product, FQA conducts random inspection and verification, and packages and ships to customers as required. The process is FQC-FQA-packaging-shipping.

What are the layers of aluminum PCB?

Aluminum-based circuit boards (PCBs) mainly consist of three layers, namely the circuit layer (copper foil), the insulation layer, and the metal base layer. This structure gives aluminum-based PCBs excellent heat dissipation performance and mechanical strength, making them particularly suitable for applications that require efficient heat dissipation and good mechanical properties.

What is an aluminum pcb? How is it made?

The circuit layer is usually made of copper foil, which is etched to form a printed circuit for assembly and connection of devices. The thickness of the copper foil can be between 1oz and 10oz to ensure the conductivity and load-bearing capacity of the circuit.

The insulation layer is the core technology of aluminum-based PCBs. It uses low thermal resistance thermal insulation materials with a thickness of 0.003″ to 0.006″ inches and has good bonding, insulation and thermal conductivity.

The metal base layer is generally aluminum or copper, which has good thermal conductivity and certain mechanical strength. It can quickly conduct the heat generated during device operation, effectively reduce the operating temperature of the device, and improve the power load and reliability of the module.

In addition, according to the specific application requirements, aluminum clad PCB can be designed as single-sided board, double-sided board or very few multi-layer boards. Single-sided board consists of three-layer structure, while double-sided board adds a circuit layer on this basis, forming a structure of circuit layer, insulation layer, aluminum base, insulation layer, circuit layer.

How thick is aluminum clad PCB?

The thickness of aluminum clad board usually ranges from 0.2mm to 10mm, and the specific choice depends on the number of layers and purpose of the circuit board.

0.2mm to 0.5mm aluminum clad board is suitable for making single-sided circuit boards, 0.5mm to 1.2mm is suitable for double-sided circuit boards, and 1.2mm to 2.0mm is suitable for multi-layer circuit boards.

In addition, common standard thicknesses also include 0.5mm, 1.0mm, 1.5mm, etc. For the PCB board itself, common thicknesses are 0.6mm, 1.0mm, 1.6mm, 2.0mm, 2.4mm, etc.

The standard PCB thickness ranges from 0.031 inches (0.78 mm), 0.062 inches (1.57 mm), and 0.093 inches (2.36 mm), with the most commonly used thickness being 0.063 inches (1.57 mm or 157 mm).

The thickness of conventional PCB finished products is generally between 0.8 mm and 1.6 mm, with 1.6 mm being the most common specification‌.

What are aluminum PCBs used for?

Aluminum substrate PCB (aluminum PCB) is a metal-based copper-clad board with good heat dissipation function. It consists of a circuit layer (copper foil), an insulating layer and a metal base layer. Sometimes it is also designed as a double-sided board or a multi-layer board structure.

The application of aluminum substrates is very wide, covering multiple fields and equipment, mainly including:

  • 1. Audio equipment: used for input and output amplifiers, balanced amplifiers, audio amplifiers, preamplifiers, power amplifiers, etc.
  • 2. Power supply equipment: including switching regulators, DC/AC converters, SW regulators, etc.
  • 3. Communication electronic equipment: suitable for high-frequency amplifiers, filtering appliances, signal transmission circuits, etc.
  • 4. Office automation equipment: such as motor drives, etc.
  • 5. Automotive electronics: used in electronic regulators, igniters, power controllers, etc.
  • 6. Computers: including CPU boards, floppy disk drives, power supply equipment, etc.
  • 7. Power modules: such as inverters, solid-state relays, rectifier bridges, etc.
  • 8. Lamps and lighting: As an advocate of energy-saving lamps, aluminum substrates are increasingly used in various color energy-saving LED lamps.
What is an aluminum pcb? How is it made?

Aluminum substrate PCBs are particularly favored in high-end electronic devices due to their excellent heat dissipation performance and reliability, and are widely used in various occasions that require efficient heat dissipation.

What are the disadvantages of aluminum PCB?

The main disadvantages of aluminum PCBs include high cost, usually only single-sided panels can be made, electrical strength and withstand voltage are more prone to problems, thermal conductivity test methods and test results are not matched, aluminum substrate material specifications are not unified, copper foil thickness does not meet the standard, and there are more defective products and shoddy work. ‌

  • 1. High cost: The price of aluminum substrates usually accounts for more than 30% of the product price, which is significantly higher than other types of PCBs.
  • 2. Production limitations: Aluminum substrates can usually only produce single-sided boards, and the process of producing double-sided boards is more difficult, which limits their use in some applications.
  • 3. Electrical strength and withstand voltage issues: Aluminum substrates are more prone to problems in electrical strength and withstand voltage, which may affect the safety and reliability of the product.
  • 4. Thermal conductivity test and material specification issues: The mismatch between the test methods and test results of thermal conductivity, as well as the lack of unified material specifications for aluminum substrates (there are CPCA industry standards, national standards, and international standards, etc.), all increase the complexity of production and quality control.
  • 5. Copper foil thickness and defective products: Failure to meet the copper foil thickness standards may lead to problems such as burning circuits. At the same time, due to cutting corners and increasing defective products, the quality control of aluminum substrates has become more difficult.

These shortcomings limit the application scope of aluminum substrates to a certain extent and increase the risks of production and use. Therefore, when choosing to use aluminum substrates, it is necessary to comprehensively consider their advantages and disadvantages, as well as specific application requirements and environmental conditions.

What temp can aluminum PCB withstand?‌

The high temperature resistance of aluminum substrates is related to the materials used, manufacturing process and working environment. Under normal circumstances, aluminum substrates can withstand a wide range of temperatures, but the specific temperature resistance is also affected by factors such as solder paste and lamp quality.

The temperature that aluminum substrates can withstand during welding can reach about 400 degrees Celsius, and the welding time is about 30 seconds to 50 seconds, of which the actual melting time is only 10 seconds, which shows that aluminum substrates can withstand higher temperatures in a short period of time without damaging the components.‌

In addition, aluminum substrates, like other types of PCB boards (such as FR4 boards, copper substrates, etc.), can withstand an ambient temperature range of -40℃ to +150℃.

However, in long-term use, the highest temperature that these boards can withstand is between 120℃ and 130℃‌. This shows that although aluminum substrates and other types of PCB boards can work in a wide temperature range, their performance and life will be affected to a certain extent when working in a high temperature environment for a long time.

In short, as an important component in the field of electronics, aluminum substrates have excellent performance and broad application prospects. I believe that in the future, with the continuous advancement of technology, aluminum substrates will play a more important role in the field of electronics.

You may also like

Street Light MCPCB,MCPCB Factory&Manufacturer
Wednesday, September 18th, 2024

Being the market leader, we offer high quality range of LED Street Light MCPCB or Street Light PCB. These PCB are manufactured using high grade raw material under the supervision of expert and professional team with international quality standards.

Street Light

Street Light PCB

5w12V led street light mcpcb,size:14x14mm ① 10mm 5W 12V 2C2B 300mA 120- 130lm+/W
10w24V led street light mcpcb,size:18x18mm ① 13mm 10W 24V 4C2B 300mA 120-130lm+/W
15w30V led street light mcpcb,size:19x19mm ① 16mm 15W 36V 6C2B 300mA 120-130lm+/W
20w30V led street light mcpcb,size:24x24mm 019mm 20W 30V 5C4B 600mA 120-130lm+/W
20w30V led street light mcpcb,size:56x40mm 24x24mm 20W 30V 5C4B 600mA 120- 130lm+/W
30w30V led street light mcpcb,size:56x40mm 24x24mm 30W 30V 5C6B 900mA 120-130lm+/W
50w32V led street light mcpcb,size: 56x40mm 24x24mm 50W/4 32V 5C9B 1.5A 120-130lm+/W
50w42V led street light mcpcb,size: 56x40mm 24x24mm 50W/4 42V 7C7B 1A 120-130lm+/W
50w32V led street light mcpcb,size:56x40mm 24x24mm 50W 32V 5C10B 1.5A 120-130lm+/W
200w36V led street light mcpcb,size:194mm ① 185mm 200W 36V 10C5BM 1.5Ax4 130- 140lm+/W

These Street Light PCB are available for our valuable customers at affordable cost in market. Due to their precise design and high functionality our offered materials are ideal for making wide variety of led street light of various watt and models.

Street Light MCPCB

MCPCB production process

Substrate preparation: Select appropriate metal substrates, such as aluminum, iron, copper, indium copper, tungsten-molybdenum alloy, etc., as the base of MCPCB. These metal substrates have good thermal conductivity and are the core components of MCPCB.

Insulating dielectric layer coverage: Cover the metal substrate with an insulating dielectric layer. Common insulating dielectrics include modified epoxy resin, polyphenylene ether, polyimide, etc. This layer not only provides the insulation performance required by the circuit, but also enhances the mechanical strength and durability of the MCPCB.

Copper layer laying: Lay the copper layer on the insulating dielectric layer to form the conductive part of the circuit. The copper layer is made through the production process of printed circuit boards, and the corresponding circuits are laid according to the needs of electronic circuits.

Thermocompression bonding process: The metal substrate, insulating dielectric layer and copper layer are combined together through the thermocompression bonding process to form the basic structure of the MCPCB. This step ensures the close bonding between the layers and improves the stability and reliability of the MCPCB.

Circuit production: According to the design requirements, circuit lines are made on the copper layer. This includes drilling, dry film covering, exposure, development and other steps to ensure the accuracy and conductivity of the circuit line.

‌Inspection and testing‌: Inspect and test the completed MCPCB to ensure that its performance meets the design requirements. This includes inspection of the circuit surface and aluminum base surface, as well as testing of conductivity and insulation performance.

What are the advantages of mcpcb

Excellent heat dissipation performance: MCPCB usually adopts aluminum substrate or copper substrate, which has good thermal conductivity, can effectively dissipate the heat generated by electronic components, and improve the stability and reliability of the circuit board. This excellent heat dissipation performance makes MCPCB particularly suitable for high switching power applications, such as LED lighting, power modules, automotive electronics and power electronics, among which LED lighting is one of the most widely used fields of MCPCB.

‌High mechanical strength: The base material of metal core PCB is thicker, with high mechanical strength and bending and torsion resistance, which is conducive to the assembly and transportation of electronic products. This feature makes MCPCB perform well in environments that need to withstand greater physical pressure or frequent movement.

‌Reliable welding performance: After the surface of metal core PCB is coated with solder paste, it has good welding performance and is suitable for surface mount technology (SMT) and plug-in welding technology. This feature improves the applicability of MCPCB in PCBA processing, making it a preferred material in the manufacture of modern electronic products.

‌Corrosion and wear resistance: Metal core PCB has strong corrosion resistance and wear resistance, which is suitable for electronic products in harsh environments. This feature enables MCPCB to work stably for a long time under high temperature, humidity or other extreme conditions, improving the durability and reliability of the product.

‌Space saving‌: Compared with traditional FR-4 substrates, MCPCB has higher heat dissipation performance, which can design smaller electronic products and save space. This advantage is particularly important in devices with limited space, such as portable electronic devices such as smartphones and tablets.

‌Improve reliability‌: Good welding performance and corrosion resistance can improve the reliability and stability of the circuit board and reduce the failure rate. This is especially important in critical systems and equipment, such as medical equipment, industrial control systems, etc., where reliability and stability are crucial factors.

What accessories does a street lamp have?

  1. Lamp holder. The lamp holder of a street lamp is usually an LED lamp, which is the core part of the street lamp. It is responsible for converting electrical energy into light energy to provide lighting services for people. The quality of the lamp holder directly affects the lighting effect and life of the street lamp.
  2. Lamp pole. The lamp pole is the part that supports the lamp holder. It is usually made of metal and has various shapes such as conical poles and prismatic poles. Street lamps in different scenes may require lamp poles of different heights and shapes to meet lighting needs. In addition, safety issues should also be considered, such as anti-theft design and prevention of excessive wind force. In addition, installation accessories such as clamps are also used to fix the lamp pole.
  3. Light source. The light source is an important part of the street lamp, including LED lamp beads, bulbs, etc. The choice of light source is related to key indicators such as brightness, energy consumption and life of the street lamp. At present, LED light sources are widely used in street lamps due to their high efficiency, energy saving and long life.
  4. Electrical control device. The electrical control device includes components such as ballast, trigger, light control switch, etc., which are used to control the working state of the street lamp and protect the circuit safety. For example, light-operated switches can automatically turn streetlights on and off according to ambient light, saving energy. In addition, some advanced streetlights may also be equipped with intelligent control systems to achieve remote monitoring and management.
  5. Installation accessories. These include small parts such as clamps and screws. Although these parts are not conspicuous, they are very important for the installation and maintenance of streetlights. For example, clamps are used to fix the connection between the top of the lamp pole and the lamp head, and screws are used to fix various parts to ensure the stability and safety of the streetlight.

What are the street lights?

Ordinary street lights
Ordinary street lights are the most common lighting facilities on the streets. They usually use light bulbs or LED lamp heads and are installed on light poles to provide basic lighting for pedestrians at night.

Solar street lights
Solar street lights are an environmentally friendly street light that uses solar panels to absorb solar energy, converts energy into electrical energy, stores it in batteries, and lights up the street lights at night through control devices. Solar street lights do not need to be connected to an external power supply, have low maintenance costs, and are widely used in parks, suburban roads and other places.

LED street lights
LED street lights use light-emitting diodes as light sources, which have the advantages of high efficiency, energy saving, long life, safety and reliability. LED street lights have good lighting effects and can be intelligently adjusted according to different environments. They are the first choice for modern urban street light renovation.

Landscape street lights
In addition to the basic lighting function, landscape street lights also emphasize artistic decorative effects. It is usually integrated with the surrounding environment, with unique design and diverse shapes, and is used to increase the beauty and cultural atmosphere of street landscapes.

Multifunctional street lights
Multifunctional street lights integrate multiple functions such as lighting, monitoring, and communication. In addition to providing lighting, this type of street lamp is also equipped with cameras, display screens and other devices for urban management and security monitoring.

You may also like

What is MCPCB? Its function and performance
Friday, September 6th, 2024

MCPCB (Metal Core Printed Circuit Board) is a key component in modern electronics, especially in terms of heat management. It is widely used in LEDs and can be found in almost all LED products. From LED applications to power electronics, MCPCB plays a vital role in ensuring that devices remain cool, efficient and long-lasting.

What is MCPCB?

‌MCPCB‌, full name Metal Core PCB, is also known as aluminum substrate or aluminum-based circuit board. It is a type of circuit board that attaches the original printed circuit board to a metal with better thermal conductivity to improve the heat dissipation performance at the circuit board level.

What is MCPCB? Its function and performance

This metal-based printed circuit board usually uses aluminum as the substrate, but also includes the use of other metals such as copper or other high thermal conductivity materials. The design of MCPCB combines the high thermal conductivity of metal with the flexibility of printed circuit boards, making it widely used in various industrial electronic devices.

Especially in the LED industry, MCPCB has become an indispensable component due to its strong magnetic conductivity and excellent heat dissipation. In addition, in the production process of MCPCB, in addition to using aluminum substrates, fiberglass boards (FR-4) are also used for some designs, but special heat dissipation pads need to be designed and fixed by screws or glue.

What is the use of MCPCB?

The main use and advantage of MCPCB (metal core printed circuit board) lies in its excellent heat dissipation performance. ‌

MCPCB, full name Metal Core PCB, is a printed circuit board attached to a metal with better heat conduction effect, thereby improving the heat dissipation at the circuit board level.

This design not only improves the heat dissipation performance of the circuit board, but also has some specific application restrictions, such as the temperature cannot exceed 140℃ when the circuit system is operating, which is determined by the characteristic limitations of the dielectric layer.

During the manufacturing process, the temperature must not exceed 250℃~300℃, which must be understood in advance before passing the tin furnace. This design of MCPCB makes it widely used in many fields, including but not limited to:

‌LED lights‌: used for spotlights, high-current PCBs, high-current LEDs, street safety applications, etc.

What is MCPCB? Its function and performance

Automotive electronics‌: used in power conditioners, ignition tools, switching converters, variable optical systems, and motors for electric and hybrid vehicles.

Power supply equipment‌: such as DC-DC converters, voltage regulators, high-density power conversion, and switching regulators.

Audio equipment‌: balanced, input-output, audio, power supply, and pre-shielded amplifiers.

Home appliances‌: flat panel displays, motor controls, etc.

OA equipment‌: large electronic display substrates, thermal print heads, and printer drivers.

The unique combination of MCPCB (metal plate, insulation layer, and additional copper foil) provides strong magnetic conductivity and excellent heat dissipation, which is particularly important in the LED industry.

In addition, the high thermal conductivity of MCPCB allows the generated heat to dissipate quickly, preventing heat accumulation and ensuring that the LED operates within the optimal temperature range, which plays an important role in improving the performance, thermal management, and overall reliability of UV LEDs.

What is the difference between FR4 and MCPCB?

The main difference between FR4 and MCPCB (metal matrix printed circuit board) is their heat dissipation performance, material composition, and application areas. ‌

1. Heat dissipation performance:

FR4 has a low thermal conductivity and its heat dissipation performance is not as good as MCPCB. MCPCB is based on its metal core (usually aluminum or copper), and transfers heat to the heat sink through the thermal conductive dielectric layer and the metal substrate, and has good heat dissipation ability.

2. Material composition:

FR4 is a multi-layer printed circuit board material composed of glass fiber cloth and epoxy resin. It has good electrical and mechanical processing performance, but general heat dissipation performance.

MCPCB attaches the original printed circuit board to a metal with better thermal conductivity. The design of the metal substrate and the thermal conductive dielectric layer significantly improves the heat dissipation efficiency.

3. Application field:

FR4 is widely used in electronic equipment that requires basic heat dissipation requirements due to its low cost and good electrical performance.

MCPCB is often used in high-power, high-heat-intensive application scenarios due to its excellent heat dissipation performance, such as TVs, monitors and other cost-sensitive products.

In summary, MCPCB has better heat dissipation performance than FR4 through its metal substrate and optimized thermal conductivity design, and is particularly suitable for application scenarios that require high-performance heat dissipation.

What is the structure of MCPCB?

The structure of MCPCB consists of a circuit layer (copper foil layer), a thermal insulation layer and a metal base layer. ‌

‌Circuit layer‌ (copper foil layer): It requires a large current carrying capacity, so thicker copper foil should be used, and the thickness is generally between 35μm~280μm.

‌Thermal insulation layer‌: This is the core technology of PCB aluminum substrate, usually composed of special polymers filled with special ceramics, with low thermal resistance, excellent viscoelastic properties and resistance to thermal aging, and can withstand mechanical and thermal stress.

‌Metal base layer‌: Aluminum or copper metal is used as the base material of the circuit board, and a layer of copper foil or copper plate metal plate is attached to the substrate as a circuit to improve problems such as poor heat dissipation.

How thick is the copper in MCPCB?

The thickness of copper foil in MCPCB is generally 35μm~280μm. ‌

The structure of MCPCB (Metal Core PCB) consists of circuit layer (copper foil layer), thermal conductive insulation layer and metal base layer. The circuit layer requires a large current carrying capacity, so thicker copper foil should be used.

Such thickness can meet the demand of high current carrying capacity. The use of such copper foil guarantees the superiority of MCPCB in electrical performance and thermal conductivity.

What is the thermal conductivity of MCPCB?

The thermal conductivity of MCPCB varies with the materials used, but is generally much higher than that of standard FR4 PCB. Most MCPCBs have a thermal conductivity in the range of 1 W/mK to 5 W/mK. In contrast, the thermal conductivity of FR4 boards is about 0.3 W/mK, which makes them much less efficient in heat dissipation.

The advantage of MCPCB is that its heat dissipation performance is significantly better than that of standard FR-4 structure. This advantage is not only reflected in the thermal conductivity of the dielectric used, which is far higher than that of conventional epoxy glass, but also in its heat transfer efficiency, with a thermal transfer index of one-tenth the thickness being more efficient than that of traditional rigid PCB.

What is MCPCB led?

MCPCB LED refers to a light-emitting diode (LED) that uses a metal core printed circuit board (MCPCB) as a heat dissipation substrate. This technology uses a metal core printed circuit board as a heat dissipation substrate for LEDs to improve the heat dissipation performance of the LED, thereby ensuring stable operation and extending the service life of the LED.

What is MCPCB? Its function and performance

MCPCB is a special printed circuit board in which the metal core acts as a thermal conductive layer, which can effectively conduct the heat generated by the LED to avoid overheating that affects the performance and life of the LED.

In addition, the design and manufacture of MCPCB also consider the needs of electrical connections and physical support to ensure the reliability and stability of the LED module. With the increasing application of high-power LEDs, MCPCB technology has been favored for its excellent heat dissipation performance and has become one of the key technologies in high-power LED packaging.

Conclusion:

MCPCB has a unique structure, including a conductive metal base, a dielectric insulation layer, and a copper circuit layer, which can provide a reliable solution to the heat dissipation challenges in modern electronic products. As the demand for high-performance electronic products continues to grow, the demand for advanced materials such as MCPCB will also continue to grow to meet these thermal management challenges.

You may also like

Aluminum Printed Circuit Board Design&Prototyping
Monday, September 2nd, 2024

As a leading aluminum printed circuit boards manufacturer with over 18 years experience, we provide full turn-key service for all the world. In our aluminum base print circuit boards factories, we equipped with advanced high precision manufacturing and testing equipment to ensure the high quality and fast delivery.

What is Aluminum Printed Circuit Board

Aluminum printed circuit board is a metal-based copper-clad board with good heat dissipation function. Generally, a single-sided board consists of three layers, namely the circuit layer (copper foil), the insulation layer and the metal base layer. There are also designs for high-end use as double-sided boards, with the structure of circuit layer, insulation layer, aluminum base, insulation layer, and circuit layer. Very few applications are multi-layer boards, which can be made of ordinary multi-layer boards, insulation layers, and aluminum bases.

LED aluminum printed circuit boards are just circuit boards made of aluminum alloy. In the past, our general circuit boards were made of fiberglass, but because LEDs generate a lot of heat, the circuit boards used for LED lamps are generally aluminum printed circuit boards, which can conduct heat quickly. The circuit boards used for other equipment or electrical appliances are still fiberglass boards!


What are the advantages of aluminum PCB?

  1. Heat dissipation
    Many double-sided boards and multi-layer boards have high density and high power, and it is difficult to dissipate heat. Conventional printed circuit board substrates such as FR4 and CEM3 are poor conductors of heat, with insulation between layers, and heat cannot be dissipated. If local heating of electronic equipment is not eliminated, electronic components will fail at high temperatures, and aluminum printed circuit boards can solve this heat dissipation problem.
  2. Thermal expansion
    Thermal expansion and contraction are the common nature of materials, and the thermal expansion coefficients of different materials are different. Aluminum-based printed circuit boards can effectively solve the heat dissipation problem, thereby alleviating the thermal expansion and contraction problems of different materials of components on the printed circuit board, and improving the durability and reliability of the whole machine and electronic equipment. In particular, it solves the thermal expansion and contraction problems of SMT (surface mount technology).
  3. Dimensional stability
    Aluminum-based printed circuit boards are obviously much more stable in size than printed circuit boards made of insulating materials. Aluminum-based printed circuit boards and aluminum sandwich panels, heated from 30℃ to 140~150℃, have a dimensional change of 2.5~3.0%.
  4. Other advantages
    Aluminum-based printed circuit boards have a shielding effect; high strength, replacing brittle ceramic substrates; ease of use, safe use of surface mounting technology; reducing the truly effective area of ​​the printed circuit board; replacing components such as radiators, improving product heat resistance and physical properties; reducing production costs and labor.

How does an aluminum PCB work?

‌The working principle of aluminum printed circuit boards mainly relies on its unique three-layer structure: circuit layer (copper foil), insulation layer and metal base layer. This structure enables aluminum printed circuit boards to have good heat dissipation function.

Specifically, the power device is mounted on the circuit layer. When the device is running, the heat generated is quickly transferred to the metal base layer through the insulation layer, and then the metal base layer transfers the heat away, thereby achieving effective heat dissipation of the device. This design enables aluminum printed circuit boards to significantly reduce thermal resistance, provide excellent thermal conductivity, and maintain excellent mechanical properties.

Aluminum printed circuit boards also comply with RoHS requirements and are more suitable for SMT processes. In the circuit design scheme, heat diffusion is extremely effectively processed, the module operating temperature is reduced, the service life is extended, and the power density and reliability are improved. By reducing the configuration of heat sinks and other hardware, aluminum printed circuit boards can also reduce product size, reduce hardware and assembly costs, and optimize the combination of power circuits and control circuits.

Types of printed circuit board aluminum

‌The classification of aluminum printed circuit boards mainly includes flexible aluminum printed circuit boards, hybrid aluminum printed circuit boards, multi-layer aluminum printed circuit boards and through-hole aluminum printed circuit boards.
1. Flexible aluminum printed circuit boards ‌
Utilize flexible dielectric materials to provide excellent electrical insulation, flexibility and thermal conductivity, suitable for a variety of shapes and angles, and eliminate the need for expensive fixtures, cables and connectors.
2. Hybrid aluminum printed circuit boards ‌
In a “hybrid” IMS structure, “sub-assemblies” of non-thermal substances are processed independently and then bonded to an aluminum substrate using thermal materials. Common structures are 2-layer or 4-layer sub-assemblies made of FR-4, bonded to an aluminum substrate with thermal dielectrics, which helps dissipate heat, improve rigidity and act as a shield.
‌3. Multi-layer aluminum printed circuit boards ‌
In the high-performance power supply market, it is made of multi-layer thermally conductive dielectrics, with one or more layers of circuits buried in the dielectric, and blind holes are used as thermal vias or signal paths to provide effective heat dissipation solutions for complex designs.
‌4. Through-hole aluminum printed circuit boards‌
Before lamination, the aluminum is plated and filled with dielectric, thermal materials or sub-components are laminated to both sides of the aluminum using thermal bonding materials, and plated through holes pass through the gaps in the aluminum to maintain electrical insulation.

Aluminum PCB Structure

  1. Circuit layer
    The circuit layer (generally electrolytic copper foil) is etched to form a printed circuit for assembly and connection of devices. Compared with traditional FR-4, with the same thickness and line width, aluminum printed circuit boards can carry higher currents.
  2. Insulation layer
    The insulation layer is the core technology of aluminum printed circuit boards, which mainly plays the role of bonding, insulation and heat conduction. The insulation layer of aluminum printed circuit boards is the largest thermal barrier in the power module structure. The better the thermal conductivity of the insulation layer, the more conducive it is to the diffusion of heat generated by the device during operation, and the more conducive it is to reduce the operating temperature of the device, thereby achieving the purpose of increasing the power load of the module, reducing the volume, extending the life, and increasing the power output.
  3. Metal base
    The type of metal used for the insulated metal substrate depends on the comprehensive consideration of the thermal expansion coefficient, thermal conductivity, strength, hardness, weight, surface state and cost of the metal substrate.

Aluminum Printed Circuit Board Process

Material: Aluminum printed circuit board is a heat dissipation material with excellent thermal conductivity. Aluminum alloy materials with high thermal conductivity, high strength and good corrosion resistance are usually selected. Choosing the right substrate material has a very important influence on the stability and heat dissipation performance of aluminum printed circuit boards.

‌Cutting‌: Cut the substrate into plates of appropriate size and into the shape of the entire circuit board. Cutting methods include laser cutting, mechanical cutting, etc. After cutting, it needs to be polished to meet the requirements of the next drilling.

Grinding‌: Grinding is to form a smooth surface on the substrate material and facilitate the next drilling operation. Factors affecting the grinding effect include the type and accuracy of the tool, the type and concentration of the grinding fluid, the pressure, etc.

Drilling‌: Drilling is to form wiring holes for components on the circuit board. Most of them are now using CNC drilling machines, which can make the drilling accuracy higher. Factors affecting the drilling quality include the material and geometric characteristics of the drill bit, the drilling speed, the drilling depth, and the drilling position accuracy.

Chemical treatment: Chemical treatment is an extremely important step in the manufacturing process of aluminum printed circuit boards. The appropriate circuit layer structure is prepared by etching, copper plating, surface treatment and other methods. This step requires strict control of parameters such as the concentration, temperature and time of the corrosive agent and electrolyte to obtain the required surface structure and quality.

Copper plating: Copper plating is to form a copper layer that connects the circuit and the ground wire, usually using methods such as chemical copper plating. Adverse factors of copper plating include uneven copper layer, excessive roughness, pinholes, and deformation of the copper layer.

Welding: Welding is a necessary step to directly solder electronic devices to aluminum printed circuit boards. Welding methods include manual welding and automated welding. During the welding process, the welding temperature, time and welding quality need to be strictly controlled to ensure reliable solder joints.

What is the thermal conductivity of aluminum PCB?

‌‌The thermal conductivity of aluminum printed circuit boards refers to the amount of heat transferred by a material per unit time and per unit area, usually expressed in W/m·K. The difference between 1.0, 1.5, and 2.0 thermal conductivity.

‌1.0 W/m·K‌: The insulation layer of the general-purpose aluminum-based copper-clad laminate is composed of an epoxy glass cloth bonding sheet, which is suitable for the heat dissipation needs of general electronic products.
‌1.5 W/m·K‌: The insulation layer of the high-heat dissipation aluminum-based copper-clad laminate is composed of a high-thermal-conductivity epoxy resin or other resin, which is suitable for occasions requiring higher heat dissipation performance.
‌2.0 W/m·K‌: The insulation layer of the aluminum-based copper-clad laminate for high-frequency circuits is composed of a polyolefin resin or polyimide resin glass cloth bonding sheet.

What is the difference between aluminum PCB and FR4?

The main differences between aluminum printed circuit boards and FR-4 circuit boards are materials, thermal conductivity, mechanical properties, cost, and application areas. ‌

  • Materials‌:
    Aluminum printed circuit boards are mainly composed of aluminum alloys, and the surface is usually coated with an insulating layer with good thermal conductivity, such as aluminum oxide (Al2O3).
    The substrate of FR-4 circuit boards is a glass fiber reinforced epoxy resin, which is formed by impregnating glass fiber cloth with epoxy resin to form a composite material.
  • Thermal conductivity‌:
    Aluminum printed circuit boards have good thermal conductivity and are suitable for applications with high heat dissipation requirements, such as LED lighting and electronic power supplies.
    FR-4 circuit boards have relatively poor thermal conductivity and are usually used in general electronic devices, not suitable for scenarios with high heat dissipation requirements.
  • Mechanical properties‌:
    Aluminum printed circuit boards are relatively hard and have good mechanical properties, and are suitable for applications that require a certain mechanical strength.
    FR-4 circuit boards are relatively soft and easy to process, but may not be as good as aluminum printed circuit boards in terms of mechanical strength.
  • Cost‌:
    Due to the high manufacturing process and material costs of aluminum printed circuit boards, the cost of aluminum printed circuit boards is relatively high.
    FR-4 circuit boards have relatively low manufacturing processes and material costs, and are usually an affordable choice.
  • Application areas:
    Aluminum printed circuit boards are mainly used in applications that require good heat dissipation performance, such as LED lamps, power modules, automotive electronics, etc.
    FR-4 circuit boards are suitable for general electronic products, such as computer hardware, communication equipment, consumer electronics, etc.

What are aluminum PCBs used for?

  1. Audio equipment: input and output amplifiers, balanced amplifiers, audio amplifiers, preamplifiers, power amplifiers, etc.
  2. Power supply equipment: voltage stabilizers, regulators, DC-AC adapters, etc.
  3. Communication electronic equipment: high-frequency amplifiers, filter appliances, and transmission circuits.
  4. Office automation equipment: motor drivers, etc.
  5. Computers: power supply devices, floppy disk drives, motherboards, etc.
  6. Power modules: inverters, solid-state relays, rectifier bridges, etc.
  7. Electronic control: relays, transistor bases, and cooling of components in various circuits;
  8. Switches, microwaves: radiators, semiconductor device insulation heat conduction, motor controllers;
  9. Industrial vehicles: igniters, voltage regulators, automatic safety control systems, and lighting conversion systems;
  10. LED displays (two modes: LED display; display using LED light sources)
  11. Lamps and lighting: With the promotion of energy-saving lamps, various energy-saving and gorgeous LED lamps are very popular in the market, and aluminum printed circuit boards used in LED lamps have also begun to be used on a large scale.

Aluminum printed circuit boards supplier

As a leading aluminum printed circuit boards manufacturer with over 18 years experience, we provide full turn-key service for all the world. In our aluminum base print circuit boards factories, we equipped with advanced high precision manufacturing and testing equipment to ensure the high quality and fast delivery

Best Technology specializes in providing prototyping service of customized aluminum PCB solutions to meet the diverse needs of our clients. To make sure the one-time success of pcb prototyping, we proceed SI, PI, EMC, DFM analysis during the production. We are committed to be the most reliable aluminum printed circuit boards supplier in the world!

You may also like

What is MCPCB prototype circuit board?
Friday, August 16th, 2024

What is MCPCB prototype circuit board?

MCPCB prototype refers to the manufacture of a small number of sample PCB boards before formal mass production, and actual welding and testing to verify the correctness, performance and reliability of the design. This process is usually called “proofing” or “prototype production”. The main purpose of MCPCB prototype is to conduct trial production before mass production of circuit boards to ensure the feasibility of the design and the quality of the product. Through MCPCB prototype, design engineers can find and solve potential problems before actual production, thereby ensuring the performance and reliability of the final product.

What is MCPCB prototype circuit board?

Why do we need prototype model?

MCPCB prototypes are to verify the correctness and performance of the design and ensure the quality and reliability of the final product. ‌By making MCPCB prototypes, developers can better optimize product designs, discover potential problems and deficiencies through testing, and make targeted improvements and optimizations.
‌1. Verify the correctness of the design: By making sample boards for testing, design problems can be found, such as errors in component layout and line connection. By discovering problems in advance and making modifications, problems can be avoided during mass production, saving time and cost. ‌
‌2. Evaluate the performance of the circuit board: Through proofing tests, the working condition of the circuit board, signal transmission quality, power supply stability and other aspects can be checked to ensure the reliability and stability of the final product. ‌
‌3. Improve the manufacturing process: During the sample board production process, manufacturing problems can be found, such as poor pads and unreliable line connections, so as to adjust the manufacturing process and workflow in time to improve the overall manufacturing quality and efficiency.

What files are needed to MCPCB prototype ?

‌1. Gerber file: contains the layer information of PCB, such as pads, connections, jacks, etc., and is the basic file for PCB manufacturing.

  1. BOM (Bill of Materials) list: lists the detailed information of all components on the PCB, including component model, quantity, etc., for procurement and assembly.

‌3. Drilling file: contains the location and size information of all holes punched on the PCB, which is very important for the manufacturer to perform drilling processing.

‌4. Circuit diagram: provides the connection method of the design, which is very important for checking whether the connection of the design is correct.

‌5. Special layer file: If the design requires special processes, such as impedance control or metallized hole wall, the corresponding special layer file needs to be provided. ‌

★★Detailed explanation of the role and importance of each file:
★★Installation instructions and precautions: Provide detailed installation instructions, including information such as component direction and polarity, as well as the processing methods of special components
★★Material and thickness instructions: Specify the substrate material, plate thickness, copper foil thickness and other information used to ensure the accuracy of the production process.

What files are needed to MCPCB prototype ?

Prototype pcb manufacturing process

  1. Design phase:

Draw schematics: Use PCB design software (such as Altium Designer, Eagle, KiCad, etc.) to draw circuit schematics and perform error checking.

Generate PCB files: Generate PCB files based on schematics and component libraries, and set parameters such as number of layers, size, line width, and vias.

Export Gerber files and drill files: Gerber files describe PCB layers, and drill files describe via positions and sizes. These files are the main files required by board manufacturers.

  1. Production phase:

Place an order to make PCBs: Package and compress Gerber files and drill files, upload them to the website or software of the board manufacturer, and select appropriate parameters and quantities to place an order and pay.

Wait for delivery: The board manufacturer produces PCBs according to the order and sends them to customers by express delivery, which usually takes a few days to a week. ‌

  1. Subsequent processing (if SMT patch is required): ‌

Transform the schematic diagram and package library: Identify the component type and direction for the patch machine, and modify the schematic diagram and package library. ‌

Export SMT patch coordinate file and bill of materials (BOM): The SMT patch coordinate file describes the component position and angle, and the bill of materials describes the component type and quantity. ‌

  1. Order SMT patch: On the website or software of the board manufacturer, select whether SMT patch is required, and upload relevant files to place an order. ‌

Waiting for delivery: The patch manufacturer performs SMT patch according to the order and sends it to the customer by express delivery. ‌

Testing phase: Test with a flying probe tester to detect defects that affect functionality, such as open circuits and short circuits.

The difference between MCPCB prototype and copy board

The main differences between MCPCB prototypes and copy boards lie in the process flow, production cycle, cost, and applicable scenarios.

  1. Different process flow: Proofing is produced according to the design documents, usually through preparation, board making, drilling, plug-in, welding, coating and other process flows, and finally form a sample consistent with the design documents. Copy board is to reverse design and produce the existing PCB board, generally only need to carry out two process flows of plate making and etching.
  2. Different production cycle: Proofing has a longer production cycle, generally it takes 1-2 weeks to produce samples, mainly because it needs to go through multiple process flows, and the manufacturer needs to carry out strict quality control. Copy board production cycle is relatively short, generally only 3-5 days to produce a copy of the same effect as the original board.
  3. Different cost: Proofing costs are higher, because proofing requires multiple sample production and testing, plus the production cycle is longer, manufacturers need to invest more manpower and material resources. ‌
    ‌Copy board costs less, because it only needs to be reverse designed and produced once, and the production cycle is short, so the cost is lower. ‌
  4. Different applicable scenarios: ‌
    ‌Proofing is suitable for scenarios where the performance and reliability of PCB boards need to be verified and tested, such as the research and development stage of new products, verification of new technologies, etc. ‌
    ‌Copy board is suitable for scenarios where a large number of PCB boards consistent with the original need to be produced quickly, such as mass production, repair and replacement, etc. ‌

How much does a MCPCB prototype cost?

  1. Basic costs: including manufacturing costs, material costs and labor costs. Manufacturing costs include depreciation of production equipment and equipment maintenance costs; material costs mainly refer to the costs of PCB boards, and the prices of different types of boards vary greatly; labor costs include the labor costs of design, board making, welding and other processes. ‌
  2. Process costs: calculated according to the customer’s special requirements for PCB boards, such as multi-layer boards, blind holes, buried holes, impedance control and other advanced processes will increase costs. The more layers, the higher the manufacturing difficulty and cost; the processing of special holes requires more sophisticated equipment and technology, so it will increase costs; impedance control In order to meet the stability of signal transmission, impedance control of PCB boards is sometimes required, which will also increase certain costs.
  3. Logistics costs: mainly include express delivery costs and insurance costs. It is calculated based on the number and weight of PCB boards, as well as the distance between the place of shipment and the place of receipt. In order to ensure the safety of goods during transportation, customers can choose to purchase insurance, and this part of the cost will also be added to the proofing price.
  4. Other costs: including taxes, surcharges, etc. According to the tax laws of different countries and regions, customers may need to pay corresponding taxes; if customers require expedited services or special services, additional fees may be incurred.

Why do prototypes cost so much?

‌1. Material cost‌: Multilayer PCBs require more substrates and prepregs, and the quality of these materials directly affects the functionality and reliability of the circuit. Although using high TG (glass transition temperature) materials will increase costs, it can improve the stability of PCBs in high temperature environments. ‌
‌2. Manufacturing process‌: The production process of multilayer PCBs is more complicated, involving multiple pressing, drilling, and copper plating processes. ‌These steps require sophisticated equipment and technology, which pushes up production costs. ‌
‌3. Design complexity‌: The design of multilayer PCBs is usually more complex, involving more circuits and more compact spatial layout. Designers need to invest more time and energy in design optimization to ensure signal integrity and electromagnetic compatibility. ‌
‌4. Testing and verification‌: To ensure that the performance of multilayer PCBs meets the standards, rigorous testing and verification are required, including electrical testing, thermal stress testing, etc., which adds additional costs. ‌
‌5. Quantity and delivery time‌: The number of samples and the delivery time required by the customer will also affect the price. ‌Urgent orders often require additional expedited fees. ‌
‌6. Documentation and component research: The quantity and quality of documentation that may need to be completed to accompany the prototype build, and the manufacturer must update or create the necessary documentation to proceed with the build. Components in the design may need to be improved, and component engineers will need to spend time researching suitable alternatives. ‌
‌7. Engineering analysis: The design may be more conceptual rather than production-ready, requiring more engineering analysis to ensure that potential manufacturing errors have been corrected. ‌
‌8. Design and debug: It is often necessary to include more elements, such as design for assembly, design for test, and design for debug. Debugging design is essential in prototyping.

You may also like