pcb
Home > Blog

Archive for the ‘PCB News’ Category

Gold Plated PCB Board: Why Use it?
Wednesday, November 6th, 2024

During the PCB board manufacturing, there is an important process called surface treatment. This is mainly used to protect the board surface from oxidation, corrosion, and good electricity. Gold plating, also is a popular surface finishing method, which commonly used in the industry. As a professional PCB fabricator, here Best Team would like to introduce some key points about gold plating that customers always pay more attention to. Let’s keep reading!

What is Gold Plating in PCB?

Firstly, let’s know what is a gold plating. Gold plating on PCBs refers to a layer of gold applied over specific areas of a circuit board. This gold coating is typically applied on the connectors, pads, and edge contacts of a PCB to improve electrical conductivity and provide better resistance against wear and oxidation. Gold plating protects these sensitive areas, which are critical for the performance and reliability of the PCB.

Gold Plated PCB Board: Why Use it?

The principle of gold plating is to dissolve nickel and gold (commonly known as gold salt) in the chemical solution. And then the circuit board is immersed in the electroplating cylinder and the current is passed on the copper foil surface of the circuit board to generate nickel gold coating. Due to the electric nickel gold has good hardness, wear resistance, and not easy to oxidization, it is widely used in the electronics.

Does Gold Plating Process Use Real Gold?

‌The gold plating in PCB is not really pure gold, but a gold alloy (has gold and some other metals in it). ‌

In PCB manufacturing, gold-plating is usually not done using pure gold, but by compression and treatment of gold alloys. Such alloys often contain small amounts of metals such as silver, nickel, and copper to reduce costs and meet specific performance requirements.

The role of gold plating in PCB is mainly to enhance electrical conductivity and chemical stability. Gold has good electrical conductivity and oxidation resistance, which can provide stable signal transmission and reliable connections in electronic devices. In addition, gold does not discolor or corrode, making it an ideal material for electronic applications.

In general, there are two main gold-plating processes: electrolytic gold-plating and brush gold-plating. Electrolytic gold plating is the deposition of metal on the circuit board through chemical bath and electrolytic process, which has higher cost but better quality. Brush gold plating, by depositing metal particles onto a conductive substrate via electronic devices, is cheaper but of poorer quality.

Why Use Gold in PCB?

May somebody curious about why use gold in PCB? To make the PCB surface more beautiful? Let me tell you why.

1. Improve electrical conductivity

Metals such as gold have good electrical conductivity. Through gold plating, a metal conductive layer can be formed at the circuit connection of the PCB board, thus significantly improving the electrical conductivity of the circuit. This helps to reduce the resistance at the circuit connection, reduce signal loss.

2. Prevent oxidation and corrosion

The gold coating has excellent chemical stability and can resist oxidation and corrosion. This can protect the PCB board from the erosion of harmful substances in the external environment, such as humidity, salt spray, chemical gases, etc., thereby extending its service life.

Gold Plated PCB Board: Why Use it?

3. Improve welding performance

Oxidized layer may be formed on the metal surface during welding, affecting welding quality. The gold coating can reduce the thickness of the surface oxide layer, thereby improving the reliability and robustness of the welding. In addition, gold plating can also provide better welding contact, reduce thermal stress during welding, and reduce the occurrence of welding defects.

4. Enhance the appearance

Gold plating can give the PCB surface metallic luster, improve the appearance texture and product grade, and increase the market competitiveness of the product. To be honest, gold appearance indeed gives a better appearance.

5. Meet specific needs

In some high-end electronic products, there are higher requirements for the electrical conductivity, corrosion resistance, welding performance and appearance texture of PCB boards. Gold plating, as an effective surface treatment technology, can meet these specific needs.

6. Meet welding quality challenges

With the improvement of integration of electronic products, IC feet are becoming more and more dense, and traditional vertical tin injection technology is difficult to meet the welding challenges of thin pads. Gold plating technology can provide better welding performance and reliability, and reduce the occurrence of welding quality problems such as virtual welding.

How Thick is Gold Plating on Circuit Boards?

The thickness of gold plating on PCBs depends on the type and application. Generally, PCB gold plating thickness ranges from 0.1-1.27um. For standard PCBs, a gold layer thickness of 0.03 to 0.05 microns is common, especially for immersion gold. However, thicker plating is applied for connectors or contacts exposed to frequent wear and tear, as these areas need more protection.

Hard gold, used for high-wear applications like edge connectors, typically has a greater thickness than immersion gold. The thickness is carefully controlled because too thin a layer might fail to provide effective protection, while an excessively thick layer could lead to wasted materials and unnecessary expense. The goal is to strike a balance that delivers durability without incurring excessive costs.

What is the Difference Between Immersion Gold and Hard Gold PCB?

Hard gold plating ‌is by electroplating, so that the gold particles are attached to the ‌PCB board, so it is also called electric gold. Because of its strong adhesion, hard gold plating is also called hard gold, which is often used for ‌ memory bar ‌ gold finger and other parts that need wear-resistant.

‌Immersion gold ‌ is through the ‌ chemical reaction, the gold particles crystallization and attached to the PCB ‌ pad, so it is also known as ‌ soft gold. Due to the weak adhesion, the sinking gold is mainly used for the surface treatment of the pad, and the weldability is good. The difference between hard gold plating and immersion gold are including:

  • Color: Immersion gold is more yellow, while gold plating is more white.
  • Crystal structure: Immersion gold has a denser crystal structure.
  • Thickness: Immersion gold has a thicker layer of gold.
  • Wear resistance: Gold plating is harder and more resistant to wear and tear.
  • Solderability: Immersion gold is easier to solder.
  • Short circuits: Gold plating is more likely to cause short circuits.
  • Oxidation resistance: Immersion gold is less prone to oxidation.
  • Cost: Immersion gold is more expensive.
  • Deposition process: Gold plating uses an external electric current, while immersion gold is a chemical process.
  • Suitability: Gold plating is better for environments with high mechanical stress, while immersion gold is better for movable contacts.

PCB Applications of Gold Plating

Gold-plated PCBs are popular in industries where reliability and durability are essential. Some typical applications include:

  • Aerospace and Defense
  • Medical Devices
  • Telecommunications
  • Consumer Electronics
  • High power electronics
  • High current electronics
  • Low voltage digital logic electronics

As a PCB and PCBA manufacturer, we provide various surface treatment options for customers, including: ENIG, ENEPIG, OSP, HASL-LF, Immersion gold, hard gold (up to 50u’’). We offer customized PCB service tailored to customer’s requirements, we will try our best to meet the demands of surface treatment. Welcome to contact us if you have any questions.

You may also like

What is inverter PCB? Where is inverter p.c. board?
Wednesday, October 23rd, 2024

What is an inverter circuit board?

An inverter circuit board is designed to manage the conversion process by controlling the flow of current, regulating voltage, and ensuring efficient energy transfer. It can control and regulate the conversion of direct current (DC) into alternating current (AC). In the application of renewable energy systems such as solar power generation and wind power generation, inverters play a crucial role. It efficiently converts the DC energy collected by solar panels or wind turbines into AC power supplies suitable for home and business use.

An inverter PCB typically includes components such as power semiconductors (IGBTs or MOSFETs), microcontrollers, and various passive elements that enable the inverter to function correctly.

What is inverter PCB? Where is inverter p.c. board?

Types of Inverter PCB

Inverter PCBs come from several types, mainly are single-sided PCB, double-sided PCB and multilayer PCB.

Single-Sided PCB

A single-sided PCB is the most basic type, with all the components and circuits mounted on one side. It is commonly used in low-cost inverters with relatively simple circuits. Due to the limited space and circuit paths, its performance and power handling capabilities are moderate. Therefore, it is suitable for small-scale inverter systems or low-power home appliances.

Double-Sided PCB

Double-sided PCBs feature components and copper circuitry on both sides of the board. Furthermore, plated through holes can be drilled on such board to improve the electricity. These PCBs are suitable for mid-range inverter designs that require a higher number of components and connections, as they provide better performance and power efficiency. In higher power applications like motor control systems and renewable energy inverters, double sided PCB are commonly used.

Multilayer PCB

Inverters designed for industrial applications or high-performance devices often require multilayer PCBs. These boards consist of three or more layers of circuitry sandwiched between layers of insulation. Multilayer PCBs can reduce electromagnetic interference (EMI) and improve signal integrity, they are excellent in complex inverter systems used in electric vehicles (EVs), large solar arrays, and industrial motor drives.

What Benefits Does an Inverter PCB Offer?

First of all, ‌ high reliability ‌ is an important advantage of inverter PCB. Through precise circuit design and high-quality assembly processes, inverter PCBs can significantly improve the stability and reliability of equipment. In addition, the modular design makes troubleshooting and maintenance more convenient.

Secondly, ‌environmental protection ‌ is also an important feature of the inverter PCB. Conventional inverter PCBs may use halogen-containing chemical materials in the manufacturing process, which can pose potential threats to the environment and human health. The halogen-free inverter PCB adopts halogen-free substrate and lead-free welding technology, does not produce harmful environmental pollutants, and has less impact on the environment and human health.

In addition, ‌ easy to upgrade and maintain ‌is another important advantage of inverter PCBs. When the inverter needs to be upgraded or repaired, it can be achieved by replacing or repairing specific PCB modules, without large-scale changes to the entire system, which greatly reduces the complexity and cost of upgrading and maintenance.

Finally, ‌ highly integrated ‌ is also a significant advantage of inverter PCBs. Through a highly integrated design, the size and weight of the inverter are reduced for easy installation and maintenance.

What is an Inverter Circuit Diagram?

An inverter circuit diagram is a schematic representation that illustrates how the components on the PCB are interconnected to convert DC power into AC power. It provides a detailed view of the flow of current and the role each component plays within the inverter system.

What is inverter PCB? Where is inverter p.c. board?

The diagram typically includes:

  • Power Input: Showing where the DC power is supplied, often from batteries, solar panels, or other DC sources.
  • Switching Devices: Components like Insulated Gate Bipolar Transistors (IGBTs) or Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs), which are used to alternate the direction of current, producing AC power.
  • Control Circuit: A microcontroller or other control logic that regulates the switching timing and frequency to generate a stable AC output.
  • Filters: Inductors and capacitors used to smooth out the AC waveform and minimize harmonic distortion.
  • Protection Circuits: Components that safeguard against overcurrent, overvoltage, and short circuits, ensuring safe operation of the inverter.

Applications of Inverter PCBs

Inverter PCBs are found in various applications, including renewable energy systems like solar inverters, uninterruptible power supplies (UPS), electric vehicle systems, motor drive systems, and home appliances like air conditioners, refrigerators, and washing machines. Below are the typical applications of inverter PCBs:

Solar Inverters

In solar power systems, inverter PCBs are critical for converting the DC electricity generated by solar panels into usable AC electricity for homes and businesses. Solar inverters also use MPPT (Maximum Power Point Tracking) algorithms to optimize energy harvesting.

Uninterruptible Power Supplies (UPS)

In UPS systems, inverter PCBs ensure the reliable conversion of DC battery power into AC electricity during power outages. These systems are vital in data centers, hospitals, and other environments where uninterrupted power is essential.

Electric Vehicles (EVs)

EVs rely on inverter PCBs to convert the DC power stored in the battery into AC power to drive the motor. The performance and efficiency of the inverter PCB directly affect the vehicle’s range and driving experience.

Industrial Motor Drives

Many industrial applications use AC motors for machinery and equipment. Inverter PCBs regulate the speed and torque of these motors by converting DC power into controlled AC output, they are important for automation, robotics, and manufacturing processes.

Home Appliances

Many modern home appliances, such as air conditioners, refrigerators, and washing machines, use inverter technology for energy efficiency. Inverter PCBs in these devices help control motor speed and reduce energy consumption, contributing to more eco-friendly and cost-effective home systems.

What Causes an Inverter Board to Fail?

There are many factors that can cause inverter board to fail, and some of them we can recognize by visual, but sometimes we cannot. Here we listing some potential factors that make inverter PCB be damaged or fail.

  • Overheating

Excessive heat is a common cause of inverter PCB failure, particularly in high-power applications. Poor thermal management or inadequate cooling can cause components to overheat and degrade over time. For such conditions, aluminum PCBs has good thermal conductivity, this can help to heat dissipation and transfer heat out efficiently, but if the cooling system is not properly designed, even these boards can fail.

  • Poor insulation

This may be due to poor installation, improper location selection and poor quality of equipment of PCB board. We can check whether the DC connector has short-circuit supports or burns due to water immersion, and whether the edges of the component become blackened.

  • Low bus voltage

If this problem occurs in the morning and evening, then it is normal as the inverter tries to limit the generation conditions. If it occurs during normal daytime hours, it can be detected by above method.

What is inverter PCB? Where is inverter p.c. board?
  • Abnormal current leakage

These problems are often caused by poor installation quality, improper location selection and poor equipment quality. We can locate the fault area and make it insulated. If the failure is caused by the material, then replace the incorrect one.

  • No response

Ensure that the DC input is correctly connected and the inverter has built-in reverse short circuit protection. After the connection is restored, the inverter can start. If the inverter still does not work, it may be the fault of the inverter oscillation circuit or inverter itself has a problem. Try to troubleshooting and repair with new one.

Considerations When Choosing the Right Inverter PCB

Several factors should be considered when choose an inverter PCB for your device. Let’s talk about them.

1. Power Rating

    Select a PCB that can handle the power levels required by the application. Overloading a PCB beyond its rated capacity can lead to overheating, component failure, or even dangerous situations like fire.

    2. Thermal Management

    In applications where heat generation is a concern, selecting a PCB with good heat dissipation is vital. Aluminum PCB or high-quality multilayer PCBs can help dissipate heat effectively. Consider heat sinks, design thermal vias, and adequate ventilation in your design to improve thermal performance.

    3. Component Quality

    From above, we know high quality components used in the PCB is important as well. High-quality capacitors, transistors, and diodes ensure reliable operation, even in harsh conditions. Always choose components rated for the expected load and environment, or get touch with Best Technology to enjoy a one-stop service from components sourcing and PCB assembly.

    4. Environmental Resistance

    If the inverter will be used in outdoor or industrial environments, choose a PCB with protective coatings, such as conformal coatings, to shield against moisture, dust, and corrosive elements. Solar power systems or outdoor motor control applications must take it in mind.

    5. PCB Layout and Size

    The physical size and layout of the PCB should align with the space available in the inverter system. A well-organized PCB layout helps reduce electromagnetic interference (EMI) and improves overall efficiency.

    Above are all the information about inverter PCB that we can shared. If you have a question concerning the topics, please contact us.

    You may also like

    Meet Best Technology at Electronica Munich 2024
    Saturday, October 19th, 2024

    Exciting News! Best Technology, a leading PCB assembly manufacturer from China, will be exhibiting at Electronica Munich 2024 in Germany. Join us at Booth No. 212 (Hall C6) from November 12 – 15, 2024 (Western Time). If you missed us at PCB West or AEMS, this is your chance!

    At our booth, you’ll have the opportunity to explore our advanced PCB manufacturing and assembly technologies. For reference, here is a booth location detail.

    Meet Best Technology at Electronica Munich 2024

    Actually, we have participated such exhibitions for several times, like PCB west, electronica in China, AEMS and so on. Here are some pictures:

    In the exhibition, our team of experts will be available to share in-depth knowledge about PCB assembly, from prototyping to low and high-volume production. We invite all interested professionals/engineers to visit and discover our capabilities in flexible circuit boards, rigid-flex circuits (2 to 50 layers), copper weights from 1/2 OZ to 30 OZ, and ultra-thin PCBs (0.15mm FR4) to heavy copper options. Best Technology offers a full turn-key service including component sourcing, board fabrication (FPC, PCB, MCPCB, Ceramic PCB), final assembly, programming, testing, and more.

    Additionally, we’ll showcase our metal dome products, widely used as tactile switches in conjunction with PCBs, flex circuits, or membrane keypads. Available in four varieties—four-leg domes (5mm-20mm), triangle domes (4mm-12mm), round domes (4mm-16mm), and oblong domes (3.7mm-58.1mm)—our metal domes come with or without adhesive (dome arrays).

    Meet Best Technology at Electronica Munich 2024

    We welcome you to explore how we manage component wastage and boost efficiency, helping you save time, money, and resources.

    About Electronica Munich

    Electronica is the world’s premier trade show for electronic components, systems, and applications, showcasing cutting-edge innovations and developments across industries. It’s the perfect place to learn about the latest trends in PCB manufacturing, power engineering, system peripherals, and EMS.

    Openning Hours of Electronica Munich 2024

    Openning Hours of Electronica Munich 2024

    Please keep in mind that your visitor ticket does not allow you to reenter the fair and will not open the turnstiles a second time if you leave the fair!

    For the visit/travel information about transportation, welcome to click electronica 2024 website or click here.

    Don’t miss out! We look forward to seeing you at Booth 212 from November 12 to November 15, 2024 (Western Time).

    You may also like

    6 Layer PCB Stackup, Thickness, Impedance Control
    Friday, October 18th, 2024

    What is a 6 Layer PCB?

    A 6 layer PCB is a printed circuit board that has six conductive layers. It consists of 4 inner layers and 2 outer layers, of which the inner layer is made of copper foil and located in the center of the board (we cannot see it by our eyes), while the outer layer is located on the top and bottom of the board. This design packs a punch, letting you fit more complex circuitry into a smaller space. It’s perfect for small electronic devices that need to do a lot.

    6 Layer PCB Stackup, Thickness, Impedance Control

    6 Layer PCB Structure

    In a typical 6 layer PCB stackup, the conductive layers are numbered from top to bottom, starting with Layer 1. Here’s what a standard configuration looks like:

    • Layer 1: Top Layer
    • Layer 2: Reference Plane 1
    • Layer 3: Signal or Plane Layer 2
    • Layer 4: Signal or Plane Layer 3
    • Layer 5: Reference Plane 2
    • Layer 6: Bottom Layer

    The top and bottom layers are the two most common layers in a 6-layer PCB. They are often used to mount large components and connectors. The main role of the top and bottom layer is to provide the structure and support of the circuit board, and can also be used to connect external devices. The middle layers handle signals and reference planes (like ground and power).

    Common 6 Layer PCB Stack-Up

    When it comes to stacking up those layers, you have a few common configurations:

    6 Layer PCB Stackup, Thickness, Impedance Control

    Stack-Up Option 1: S G S S P S

    1. Top Layer (Signal)
    2. Layer 2 (Ground)
    3. Layer 3 (Signal)
    4. Layer 4 (Signal)
    5. Layer 5 (Power)
    6. Bottom Layer (Signal)

    This kind of stack up has more signal layers, which is conducive to the wiring work between components; Because POWER and GND are far apart and not tightly coupled, the signal layers are directly adjacent, which is easy to cause crosstalk. Therefore, staggered wiring is required during wiring. When the power supply impedance is low.

    Stack-Up Option 2: S S G P S S

    • 1.     Top Layer (Signal)
    • 2.     Layer 2 (Signal)
    • 3.     Layer 3 (Ground)
    • 4.     Layer 4 (Power)
    • 5.     Layer 5 (Signal)
    • 6.     Bottom Layer (Signal)

    POWER and GND are tightly coupled, but the plane reference is too far away and the signal isolation is not good, which is easy to cause crosstalk.

    Stack-Up Option 3: S G S G P S (preferred solution)

    • 1.     Top Layer (Signal)
    • 2.     Layer 2 (Ground)
    • 3.     Layer 3 (Signal)
    • 4.     Layer 4 (Ground)
    • 5.     Layer 5 (Power)
    • 6.     Bottom Layer (Signal)

    POWER and GND layers are tightly coupled, with good EMI characteristics, and the signal layer is directly adjacent to the internal electrical layer, and is effectively isolated from other signal layers, which is not easy to crosstalk.

    Stack-Up Option 4: S G S P G S

    • 1.     Top Layer (Signal)
    • 2.     Layer 2 (Ground)
    • 3.     Layer 3 (Signal)
    • 4.     Layer 4 (Power)
    • 5.     Layer 5 (Ground)
    • 6.     Bottom Layer (Signal)

    POWER and GND are tightly coupled. The signal layer is adjacent to the ground layer, the power layer is paired with the ground layer, the impedance of each line layer can be better controlled, and the magnetic field line can be well absorbed by both layers. This layered scheme is suitable for the design of high chip density and high clock frequency.

    6 Layer PCB Thickness

    The total thickness of a 6 layer PCB usually ranges from 0.8 mm to 2.0 mm. Of course, this can vary based on materials and what you’re aiming for. Each layer contributes to this thickness, and the copper thickness often ranges from 1 oz to 3 oz. Thicker boards tend to offer better durability and heat dissipation, but they can also be less flexible, which is something to consider depending on your application. The common thickness structure are showing as below:

    6 Layer PCB Stackup, Thickness, Impedance Control

    Above are the common structure and thickness of a 6 layer multi-layer PCB, if you want thicker thickness, welcome to contact with us, our expertise team will give you the best and cost-effective solution!

    6 Layer PCB Manufacturing Process

    6 Layer PCB Stackup, Thickness, Impedance Control

    6 Layer PCB Price

    The price of a 6 layer PCB doesn’t have a standard number/value. It varies based on factors like material, size, and complexity. Generally, they are more expensive than simpler designs due to the increased number of layers and the advanced manufacturing processes involved. However, the investment often leads to improved performance and durability. Here are some factors that will effect your 6 layer PCB price:

    1. Design complexity: If the design is intricate, expect a higher price.
    2. Material quality: Premium materials can drive up the cost but often improve performance.
    3. Volume: Producing in bulk usually lowers the cost per unit.
    4. Manufacturing process: The more difficult process, it will cost much more. Like a normal 6 layer FR4 PCB with through holes is cheaper than 6layer HDI PCB with blind or buried via holes.
    5. Surface treatment: Different treatment you choose will affect your overall price.

    In general, you’re looking at prices that range from $5 to $50 or more per unit. It might sound steep, but investing in a quality 6 layer PCB can really pay off in terms of performance and reliability.

    6 Layer PCB vs. 4 Layer PCB

    6 layer PCB is different with 4 layer PCB, from the board thickness, cost, line width and spacing and etc. Here we listing three main differences between them:

    1. Board thickness

    The thickness of the PCB board is the thickness of the fingerboard, usually in millimeters. There is a difference in thickness between six-layer and four-layer plates. The thickness of the six-layer plate is usually between 1.6mm and 2.0mm, while the thickness of the four-layer plate is between 1.0mm and 1.6mm. Therefore, the thickness of the six-layer plate is thicker than that of the four-layer plate.

    2. Line width

    The line width refers to the width of the wire on the circuit board. There is also a difference in line width between six-ply and four-ply panels. The line width of a six-layer board is wider than that of a four-layer board. This is because in a six-layer board, there are more circuit layers, so it is easier to accommodate a wider line width.

    3. Drilling

    Drilling is an indispensable part of the PCB board production process. It is usually used to punch holes in the board so that electronic components can be installed. There is also a difference in the number of holes drilled between six-ply and four-ply panels. Because the six-layer board has more circuit layers, the number of holes is relatively high.

    Impedance Control for 6 Layer PCB

    ‌The impedance control of 6-layer PCB is to control the impedance value of signal transmission by designing the geometry and material of the circuit board to improve the speed and quality of signal transmission, and reduce signal reflection and interference. ‌ Common methods of controlling impedance include adjusting parameters such as the width, spacing and thickness of the signal lines, using differential lines to reduce signal interference and noise, and using interlayer isolation to prevent signal interference.

    In the 6-layer PCB design, the specific implementation methods of impedance control include:

    • Signal line width and spacing control

    Signal line width and spacing is a key factor affecting the impedance. Strictly control the line width tolerance within ±10%, and pay attention to the possible pinholes, notches, dents and other problems on the wire, which will further affect the line width and impedance.

    6 Layer PCB Stackup, Thickness, Impedance Control
    • Dielectric layer thickness control

    Dielectric layer thickness has a significant effect on impedance. Use advanced manufacturing technology and equipment to ensure the uniformity and consistency of the thickness of the medium layer, and strictly control the thickness tolerance of the medium layer within the design requirements.

    • ‌The use of differential line

    Differential line can effectively reduce signal interference and noise, improve the quality of signal transmission and anti-interference ability.

    6 Layer PCB Stackup, Thickness, Impedance Control
    • Partially filled with copper and grounded

    Fill the area without components or wires with copper, and ensure that the copper filled area is connected to the internal ground layer or power layer at multiple points. The distance between the connection holes does not exceed 1/20 of the highest harmonic wavelength of the signal ‌

    6 Layer PCB Design Considerations

    When you’re designing a 6 layer PCB, there are several things to keep in mind:

    Reference Plane Placement

    For the best performance, reference planes (usually ground and power) should be placed next to the routing layers. This setup helps maintain controlled impedance, which is critical for high-speed designs. Having a continuous ground plane right next to signal layers is a great practice.

    Plane Splits

    Sometimes, reference planes need to be divided into separate sections for analog and digital power. This keeps the analog circuitry isolated from the digital side, which helps reduce noise in sensitive areas.

    Symmetry in Design

    It’s usually best to keep the stackup symmetrical, with reference planes both above and below the signal layers. This arrangement improves signal integrity. But in some cases, asymmetrical designs are used depending on specific design needs.

    Thermal Management

    Consider how to manage heat, especially in high-power scenarios, to ensure reliability.

    Signal Routing

    High-speed or noise-sensitive signals should be routed on the inner layers between reference planes. Keeping these signals away from the outer layers helps minimize interference.

    Breakout Vias

    When transitioning from inner layers to outer layers, breakout or stub vias should be used. These vias help manage any stub effects, keeping things tidy and controlled.

    Minimum Spacing

    Lastly, always follow the board fabricator’s guidelines for minimum trace width, spacing, and annular ring sizes. This ensures the board meets the necessary standards and avoids any manufacturing issues.

    Simulation Tools

    Use simulation software to identify potential issues before manufacturing, which can save you time and hassle.

    Best Technology is a reliable PCB manufacturer in China. As one of the highly experienced circuit board suppliers, our products and services include a wide range of printed circuit boards such as rigid PCBs, flex PCBs, rigid-flex PCBs, aluminum PCBs, RF Microwave PCBs, high-speed PCBs, high-frequency PCBs, HDI PCBs, etc. If you have such demands, welcome to contact us.

    You may also like

    What is the thermal conductivity of aluminum?
    Friday, October 4th, 2024

    Aluminum is ubiquitous in all kinds of materials in daily life. The thermal conductivity of aluminum plays a very critical role in the wide application of aluminum materials. Whether it is to help electronic devices dissipate heat or to play the advantages of thermal conduction in fields such as automobiles and buildings, the thermal conductivity of aluminum must be considered.

    How good is aluminum at conducting heat?

    Aluminum has relatively good thermal conductivity, but its thermal conductivity is not as good as copper. The thermal conductivity of aluminum is about 237 W/m·K, while the thermal conductivity of copper is about 385 W/m·K, which means that under the same conditions, copper can transfer heat more efficiently.

    What is the thermal conductivity of aluminum?

    The reason why aluminum has good thermal conductivity is that its thermal conductivity is high, and aluminum has a high specific heat capacity. Specific heat capacity refers to the amount of heat that needs to be absorbed or released by a unit mass of a substance to increase or decrease the temperature by 1K. Aluminum’s high specific heat capacity makes it more efficient in absorbing and releasing heat, which is crucial for applications that need to dissipate heat quickly.

    What is thermal conductivity?

    Thermal conductivity is a physical quantity that represents the ability of a material to conduct heat. The higher the thermal conductivity, the less heat is lost within the material. Thermal conductivity is defined as the amount of heat directly conducted through a material per unit cross-section and length per unit temperature difference and per unit time, and is expressed in Watts per meter Kelvin (W/m-K).

    What is the thermal heat conductivity of aluminium?

    The thermal conductivity of aluminium is 237W/mK. Thermal conductivity (k) is a measure of the ability of heat to flow through a material.

    Thermal conductivity (k) is a measure of the ability of a material to conduct heat, and represents the amount of heat flow through a unit area per unit temperature gradient per unit time. Aluminium, as a common metal material, has a high thermal conductivity and is suitable for applications that require good thermal conductivity.

    What is the thermal conductivity of aluminum?

    What is the thermal conductivity of aluminium at high temperatures?

    The thermal conductivity of aluminium changes as the temperature increases. Generally speaking, as a metal gets hotter, its thermal conductivity decreases slightly. For aluminium, the thermal conductivity decreases as the temperature increases, but it still retains significant thermal conductivity.

    As temperatures approach 500°C, the thermal conductivity of aluminum drops to about 160 W/m·K. This drop occurs because increasing temperatures cause increased atomic vibrations within the metal, which interferes with the flow of heat. Despite this drop in thermal conductivity, aluminum still performs well in high-temperature applications, such as engines or high-performance electronics.

    What is the weight constant of aluminum?

    The weight constant of aluminum is 2.7 g/cm³. Aluminum is a metallic element with a silvery-white appearance and is a lightweight metal.

    The density of aluminum can also be expressed as 2.7×10³ kg/m³, which means that there are 2.7×10³ kg per cubic meter of aluminum. 34 In addition, the density of aluminum can also be expressed as 2700 kg/m³, which is another common unit conversion method.

    What is the K value of aluminum?

    The “K” value is a shorthand term that is often used to refer to the thermal conductivity of a material. The thermal conductivity K value of aluminum is 237 W/mK. Aluminum is a common metal material with a thermal conductivity of 237W/mK in the solid state.

    What is the thermal conductivity of aluminum?

    Thermal conductivity (thermal conductivity coefficient) is a physical property of a material that indicates the ability of heat to be conducted through a unit area and temperature gradient in a unit time. The greater the thermal conductivity, the better the thermal conductivity of the material. Aluminum, as an excellent thermal conductive material, is widely used in many applications.

    What would a high value of K mean thermal conductivity?

    A high K value means that the thermal conductivity of the material is high, that is, the material has a strong ability to conduct heat. Thermal conductivity (K value) is an important parameter to measure the rate and ability of a material to conduct heat. Materials with high K values can conduct heat more efficiently and have better thermal conductivity.

    What is the thermal conductivity of aluminum?

    Specifically, thermal conductivity (K value) is defined as the amount of heat directly conducted by a material of unit cross-section and length under unit temperature difference and unit time. The metric unit is watt/meter Kelvin (W/m·K). If the K value of a material is 1, it means that when the temperature difference between the opposite surfaces is 1 degree, 1 cubic meter of the material will conduct heat at a rate of 1 watt.

    Materials with high K values have significant advantages in thermal management. First, they can quickly transfer heat from the heat source to the heat sink, effectively reducing the operating temperature of electronic components, extending the life of the device, and improving system reliability. Second, materials with high K values can significantly reduce the thermal resistance between thermal interfaces and improve the efficiency of heat transfer, especially for high power density devices. Finally, in harsh working environments, materials with high K values can significantly enhance thermal management capabilities, prevent local overheating, and ensure stable system operation.

    Is a higher or lower k value better?

    Generally speaking, for applications that require effective conduction or heat dissipation, the higher the K value, the better. If the material has a higher K value, it can transfer heat away from hot spots faster, helping to prevent overheating.

    In the electronics industry, components can get very hot, so people use materials with high thermal conductivity to make heat sinks. These materials can draw heat away from delicate parts, helping to prevent component damage or failure.

    However, in some cases, the lower the thermal conductivity, the better. In insulating materials, you want a lower K value so that heat can’t pass through easily. In these cases, materials such as plastic or fiberglass, which have much lower thermal conductivity than aluminum, are preferred.

    Conclusion:

    With the continuous advancement of science and technology, the understanding and application of aluminum’s thermal conductivity will continue to expand and deepen. New processing technologies may further optimize aluminum’s thermal conductivity, allowing it to play a unique role in more emerging fields, such as new energy development and high-speed rail transportation.

    You may also like

    Board electronics with holes
    Friday, October 4th, 2024

    Board electronics with holes The types of vias in PCB include through holes, blind holes and buried holes, which have different characteristics and requirements in design and manufacturing. The selection of the appropriate via type should consider the number of PCB layers, wiring density, signal frequency, cost budget and production process. The via design should pay attention to avoid affecting the welding quality, preventing electrical short circuits, and saving costs in high-density packaging.

    What are the holes in a PCB called?

    What are the holes on PCB called? What are the holes in the circuit? The holes on PCB can be roughly divided into 3 types, screw holes (mounting holes), conductive holes (vias), and plug-in holes.

    Screw holes: Screw holes are used for fixing.

    Conductive holes: Conductive holes (also called vias) are used for conducting electricity just like circuits.

    Plug-in holes: Plug-in holes are of course used to plug in various parts, such as diodes, transistors, capacitors, inductors, etc.

    What is a through hole

    What is a through hole? Through holes, also known as perforations, are holes in a PCB that go all the way through the board. Their main purpose is to provide electrical connections for component pins while allowing soldering on both sides of the board.

    1.A via is a special through hole whose wall is metallized to achieve electrical connection between different layers on a circuit board. This type of hole is usually used to connect component pins to internal circuits, or to achieve electrical connection between different layers in a multi-layer PCB. Vias need to be metallized during the PCB manufacturing process, which usually includes drilling, desmearing, chemical copper plating, and electroplating.

    What is a through hole

    2.Non-conducting holes are the opposite of through holes. Their hole walls are not metallized, so they do not have electrical connection functions. These holes are mainly used for mechanical fixation, heat dissipation or identification purposes. Non-conducting holes are relatively simple in the PCB manufacturing process, and only drilling operations are required.

    What is a through hole

    What is a blind via?

    A blind via is a hole that extends from one side of a PCB to a certain internal layer without penetrating the entire board. The emergence of blind vias is mainly due to the development of HDI technology, which provides circuit designers with greater flexibility and more compact layout. Blind vias are usually used to connect surface mount components (SMD) to internal circuit layers, or to connect circuits between different internal layers.

    What is a blind via?

    What are buried vias?

    Buried vias are holes located inside the PCB that do not penetrate any side of the board. They are completely hidden inside the board and are used to connect circuits between different internal layers. Buried vias are especially useful in HDI boards because they can reduce the overall thickness of the board while maintaining electrical connections between internal circuits.

    What is a microvia?

    Microvia refers to a hole with a smaller diameter, usually at the micron level. The emergence of microvia technology enables PCB designers to achieve more complex circuit layouts in a smaller space. Microvias are often used in high-density, high-reliability electronic devices such as mobile phones and tablets. The manufacture of microvias requires high-precision drilling equipment and technology to ensure the accuracy and reliability of the holes.

    What is a microvia?

    What are Mounting holes?

    What are Mounting holes?Locking holes are auxiliary holes used in the PCB manufacturing and assembly process to accurately locate and fix the circuit board. They are usually located at the edge or specific position of the PCB to ensure that the circuit board can be accurately aligned and fixed during manufacturing, testing and assembly. The locating holes do not participate in the connection of the circuit, but are essential to ensure the quality and performance of the circuit board.

    What are Mounting holes?

    What are Mounting holes

    What are thermal vias?

    Thermal vias are holes designed specifically for heat dissipation, usually large and can run through the entire PCB or multiple layers. Their role is to reduce heat buildup on the circuit board by increasing surface area and air flow, thereby improving the stability and reliability of the device. Thermal vias are particularly important in high-performance, high-power electronic devices.

    What are thermal vias?

    FAQ About board electronics with holes

    How to solve the contradiction between manual routing and automatic routing of high-speed signals?

    Most of the current powerful routing software’s automatic routing tools have set constraints to control the routing method and the number of vias. The routing engine capabilities and constraint setting items of various EDA companies are sometimes very different. For example, whether there are enough constraints to control the winding method of the serpentine, whether the routing spacing of the differential pair can be controlled, etc. This will affect whether the routing method generated by automatic routing can meet the designer’s ideas. In addition, the difficulty of manually adjusting the routing is also related to the capabilities of the routing engine. For example, the pushing ability of the routing, the pushing ability of the via, and even the pushing ability of the routing pair copper. Therefore, choosing a routing tool with strong routing engine capabilities is the solution.

    Will adding test points affect the quality of high-speed signals?

    As for whether it will affect the signal quality, it depends on the method of adding test points and how fast the signal is. Basically, the additional test points (not using the existing vias (via or DIP pins) as test points) may be added to the line or a small section of wire may be pulled out from the line. The former is equivalent to adding a very small capacitor to the line, while the latter is an additional branch. Both of these situations will have some impact on high-speed signals, and the extent of the impact is related to the frequency speed of the signal and the edge rate of the signal. The magnitude of the impact can be learned through simulation. In principle, the smaller the test point, the better (of course, it must meet the requirements of the test equipment) and the shorter the branch, the better.

    Can you introduce some foreign technical books and data on high-speed PCB design?

    Now the application of high-speed digital circuits includes communication networks and calculators and other related fields. In the communication network, the operating frequency of PCB boards has reached around GHz, and the number of layers is as many as 40 layers as far as I know. Due to the advancement of chips, the operating frequency of calculator-related applications, whether it is a general PC or server, has reached 400MHz (such as Rambus) or above. In response to the demand for high-speed and high-density routing, the demand for blind/buried vias, mircrovias and build-up process technology is gradually increasing. These design requirements can be mass-produced by manufacturers.

    Does the design of rigid-flexible boards require special design software and specifications? Where can I undertake the processing of such circuit boards in China?

    Can I use general PCB design software to design flexible printed circuits (Flexible Printed Circuit). The Gerber format is also used for FPC manufacturers to produce. Since the manufacturing process is different from that of general PCBs, each manufacturer will have its own restrictions on line width, line spacing, and aperture (via) based on their manufacturing capabilities. In addition, some copper foil can be laid at the turning point of the flexible circuit board for reinforcement. As for the manufacturer, you can search for “FPC” as a keyword on the Internet and you should be able to find it.

    If the size of the circuit board is fixed, if the design needs to accommodate more functions, it is often necessary to increase the routing density of the PCB, but this may lead to increased mutual interference between the routings, and at the same time, the impedance cannot be reduced if the routing is too thin. Please introduce the techniques in the design of high-speed (>100MHz) high-density PCBs?

    When designing high-speed and high-density PCBs, crosstalk interference does need to be paid special attention to because it has a great impact on timing and signal integrity. Here are a few things to note:

    Control the continuity and matching of the characteristic impedance of the trace.

    The size of the trace spacing. The spacing commonly seen is twice the line width. Through simulation, you can know the impact of trace spacing on timing and signal integrity and find the tolerable spacing. The results of different chip signals may be different.

    Choose an appropriate termination method.

    Avoid the same routing direction of the upper and lower adjacent layers, or even have traces overlapped up and down, because this kind of crosstalk is greater than the case of adjacent traces on the same layer.

    Use blind/buried vias to increase the trace area. However, the production cost of the PCB board will increase. It is indeed difficult to achieve complete parallelism and equal length in actual implementation, but it should be done as much as possible.

    In addition, differential termination and common mode termination can be reserved to mitigate the impact on timing and signal integrity.

    The RF part, IF part, and even the low-frequency circuit part of the outdoor unit are often deployed on the same PCB. What are the material requirements for such PCB? How to prevent interference between RF, IF, and even low-frequency circuits?

    Hybrid circuit design is a big problem. It is difficult to have a perfect solution.

    Generally, RF circuits are laid out and wired as an independent single board in the system, and there will even be a special shielding cavity. Moreover, RF circuits are generally single-sided or double-sided boards, and the circuits are relatively simple. All of these are to reduce the impact on the distributed parameters of RF circuits and improve the consistency of RF systems. Compared with general FR4 materials, RF circuit boards tend to use high-Q substrates. The dielectric constant of this material is relatively small, the distributed capacitance of the transmission line is small, the impedance is high, and the signal transmission delay is small. In hybrid circuit design, although RF and digital circuits are made on the same PCB, they are generally divided into RF circuit area and digital circuit area, and laid out and wired separately. Shielding is used between ground vias and shielding boxes.

    You may also like

    High Frequency PCB Communication Circuits
    Friday, October 4th, 2024

    Best is mainly engaged in the production of High frequency pcb communication circuits, high-speed, microwave and radio frequency printed circuit boards, mainly in sample making and small and medium batches. The main products are: microwave radio frequency high-frequency boards, Rogers high-frequency boards, Rogers multi-layer high-frequency mixed-pressure boards, Rogers radio frequency boards, Taconic microwave boards, Taconic multi-layer circuit boards, Arlon microstrip antenna boards, ARLON high-frequency boards, F4BM antenna boards, F4BM multi-layer mixed-pressure boards, radio frequency amplifier PCB boards, HDI precision multi-layer boards, serving domestic and foreign high-tech enterprises and scientific research institutions.

    ‌What is a high frequency pcb communication circuits

    High frequency pcb communication circuits to a circuit board with an operating frequency in the high frequency band (usually greater than 300MHz or a wavelength less than 1 meter), which is mainly used to transmit high-frequency signals and data. ‌ This type of circuit board is widely used in radio frequency (RF) and microwave fields, such as communication equipment, radar systems, satellite communications, and high-speed data transmission systems.

    high frequency pcb communication circuits

    What is a high frequency pcb communication circuits

    The characteristics of high-frequency circuits include challenges such as transmission line effects, signal integrity issues, and electromagnetic interference (EMI). Due to the short wavelength of high-frequency signals, traditional low-frequency circuit design methods are no longer applicable, and special design and processing methods are required to ensure the performance and stability of the circuit.

    High-frequency circuit boards are produced on microwave substrate copper-clad boards using ordinary rigid circuit board manufacturing methods or special processing methods. They need to have high-quality electrical properties and chemical stability to meet the requirements of high-frequency signal transmission.

    Definition of high frequency pcb communication circuits

    High-frequency circuit board, as a special circuit board, is mainly suitable for occasions with high electromagnetic frequency, especially in the fields of high frequency (frequency greater than 300MHz or wavelength less than 1 meter) and microwave (frequency greater than 3GHz or wavelength less than 0.1 meter).

    It is a circuit board made on a microwave substrate copper-clad board by adopting some manufacturing processes or special processing methods of ordinary rigid circuit boards. Generally speaking, when the frequency of the circuit board reaches above 1GHz, it can be defined as a high-frequency board.

    With the rapid development of science and technology, more and more equipment designs have begun to involve microwave frequency bands (>1GHz) and even expanded to the millimeter wave field (such as 77GHz), especially in popular applications such as 77GHz millimeter wave antennas on vehicles.

    This trend not only promotes the continuous increase in frequency, but also puts higher requirements on the substrate of the circuit board.

    For example, the substrate material needs to have excellent electrical properties, stable chemical properties, and as the frequency of the power signal increases, the loss on the substrate must be extremely small. Therefore, the importance of high-frequency boards is becoming more and more prominent.

    Advantages of high frequency pcb communication circuits

    The main advantages of high frequency pcb communication circuits include efficient data transmission, strong anti-interference ability, high-frequency bandwidth and high reliability. ‌

    1. high frequency pcb communication circuits can achieve efficient data transmission. High-frequency signals have a short cycle and can transmit more information per unit time, so they have the advantage of large-capacity transmission. In addition, high-frequency signals can achieve fast signal processing and are suitable for application scenarios that require high-speed data transmission and high real-time requirements.
    2. high frequency pcb communication circuits have strong anti-interference capabilities. Due to the short wavelength of high-frequency signals, they can better avoid external interference and attenuation and have strong anti-interference capabilities. This makes high-frequency signals have advantages in fields such as wireless communications and radar systems, and can achieve stable signal transmission and reception. ‌
    3. high frequency pcb communication circuits also have the advantage of high-frequency bandwidth. High-frequency signals correspond to a larger frequency range and can provide higher bandwidth than low-frequency signals. This means that more data can be transmitted, thereby supporting higher data rates and richer media content. ‌
    4. High reliability of high frequency pcb communication circuits is also one of its advantages. The use of high-quality materials and manufacturing processes can effectively resist external interference and oxidation corrosion, ensure stable performance in high temperature environments, and thus extend the service life of the circuit board.

    Classification of high frequency pcb communication circuits

    Classification by material:

    1. Organic materials: including phenolic resin, glass fiber/epoxy resin, Polyimide, BT/Epoxy (bismaleimide triazine/epoxy resin), etc.
    2. Inorganic materials: mainly including aluminum, copper-invar-copper, ceramic, etc. These materials are mainly selected for their excellent heat dissipation function.

    Classification by the hardness of the finished product:

    1. Rigid PCB: has a solid structure and stable performance.
    2. Flexible PCB: has flexibility and bendability, suitable for occasions requiring flexible wiring.
    3. Rigid-Flex PCB: It combines the characteristics of rigid and flexible boards, and has higher design flexibility and wide application.

    Classification by structure:

    1. Single-sided board: A circuit board with a conductive layer on only one side.
    2. Double-sided board: Both sides are coated with conductive layers, separated by insulating materials in the middle.
    3. Multilayer board: It is composed of multiple conductive layers and insulating layers, and has higher circuit integration and reliability.

    Classification by use:

    1. Communication board: It is used in various communication equipment and systems.
    2. Consumable electronic board: It is commonly found in consumer electronic products.
    3. Military board: A circuit board that meets special requirements in the military field.
    4. Computer board: A circuit board used in computer hardware.
    5. Semiconductor board: A circuit board used in the manufacturing and testing process of semiconductors.
    6. Electrical test board: A circuit board used in electronic testing and measurement equipment.

    How to choose high-frequency circuit board high-speed board

    When choosing PCB board, you must find a balance between meeting design requirements, mass production and cost. In short, the design requirements cover two aspects: electrical performance and structural reliability. Especially when designing ultra-high-speed PCB (frequency greater than GHz), the choice of board is particularly important. For example, the commonly used FR-4 material will have a significantly increased dielectric loss (Df, i.e., Dielectric Loss) at a frequency of several GHz, and may no longer be applicable.

    Taking the 10Gb/S high-speed digital signal as an example, this signal can be regarded as the superposition of multiple sinusoidal wave signals of different frequencies. Therefore, the 10Gb/S signal contains multiple components of different frequencies: such as a 5GHz fundamental signal, a 3rd-order 15GHz signal, a 5th-order 25GHz signal, and a 7th-order 35GHz signal. In order to ensure the integrity of digital signals, maintain the steepness of the upper and lower edges of the signals, and be compatible with the low-loss, low-distortion transmission of RF microwaves (the high-frequency harmonic part of the digital signal reaches the microwave frequency band), the selection of materials for high-speed digital circuit PCBs has many similarities with the needs of RF microwave circuits.

    In actual engineering operations, the selection of high-frequency boards seems simple, but the factors that need to be considered are quite complex. Through the introduction of this article, PCB design engineers or high-speed project leaders can have a deeper understanding of the characteristics and selection of boards. Understand the electrical properties, thermal properties, reliability and other characteristics of the board, and use the stacking design reasonably to create products with high reliability and excellent processability, and achieve the best balance of various factors.

    Composition and key components of high frequency pcb communication circuits

    High frequency pcb communication circuits are basically composed of passive components, active devices and passive networks. Passive components include resistors, capacitors and inductors, which mainly exhibit resistance characteristics at low frequencies, but also exhibit reactance characteristics at high frequencies. Active devices such as high-frequency triodes have the characteristics of high gain, high frequency response and low noise, and are widely used in television, radio communication, radar and other fields.

    Application of high frequency pcb communication circuits

    High frequency pcb communication circuits are widely used in long-distance communication systems, with a communication distance of up to thousands of kilometers, and are often used to maintain communication between aircraft and bases. It occupies a high-frequency band of 2~30MHz, uses skywave propagation, and can propagate over long distances. Modern airborne high-frequency communication systems usually use single-sideband communication systems, which can greatly compress the occupied frequency band and save transmission power. However, high-frequency communication is also susceptible to electrical interference such as ionospheric disturbances and lightning, generating radio background noise, and there is fading, and the signal is sometimes strong and sometimes weak.

    Design Guidelines for High Frequency PCB Communication Circuits

    Design Guidelines

    High Frequency PCB Communication Circuits

    1. How to avoid high-frequency interference?

    The basic idea of ​​avoiding high-frequency interference is to minimize the interference of the electromagnetic field of high-frequency signals, which is the so-called crosstalk. You can increase the distance between high-speed signals and analog signals, or add ground guard/shunt traces next to analog signals. Also pay attention to the noise interference of digital ground to analog ground.

    1. How to solve the signal integrity problem in high-frequency communication PCB design?

    Signal integrity is basically an impedance matching problem. The factors that affect impedance matching include the architecture and output impedance of the signal source, the characteristic impedance of the trace, the characteristics of the load end, and the topology of the trace. The solution is to rely on termination and adjust the topology of the trace.

    1. How is the differential wiring method implemented?

    There are two points to note when wiring differential pairs. One is that the length of the two lines should be as equal as possible, and the other is that the spacing between the two lines (this spacing is determined by the differential impedance) should remain unchanged, that is, they should be kept parallel. There are two parallel methods, one is that two lines run on the same routing layer (side-by-side), and the other is that two lines run on two adjacent layers (over-under). Generally, the former side-by-side (side by side, shoulder to shoulder) is more commonly used.

    1. How to implement differential routing for clock signal lines with only one output end?

    To use differential routing, it must be meaningful if both the signal source and the receiving end are differential signals. Therefore, differential routing cannot be used for clock signals with only one output end.

    1. Can a matching resistor be added between the differential line pairs at the receiving end?

    The matching resistor between the differential line pairs at the receiving end is usually added, and its value should be equal to the value of the differential impedance. This will improve the signal quality.

    1. Why should the routing of differential pairs be close and parallel?

    The routing method of differential pairs should be appropriately close and parallel. The so-called appropriate proximity is because this spacing will affect the value of differential impedance, which is an important parameter for designing differential pairs. Parallelism is also required because the consistency of differential impedance must be maintained. If the two lines are sometimes far away and sometimes close, the differential impedance will be inconsistent, which will affect the signal integrity and timing delay.

    1. How to deal with some theoretical conflicts in actual wiring?

    Basically, it is right to separate the analog/digital ground. It should be noted that the signal routing should try not to cross the split place (moat), and the return current path of the power supply and signal should not be too large.

    The crystal oscillator is an analog positive feedback oscillation circuit. To have a stable oscillation signal, the loop gain and phase specifications must be met. The oscillation specification of this analog signal is easily interfered. Even if ground guard traces are added, it may not be possible to completely isolate the interference. Moreover, if it is too far away, the noise on the ground plane will also affect the positive feedback oscillation circuit. Therefore, the distance between the crystal oscillator and the chip must be as close as possible.

    It is true that there are many conflicts between high-speed wiring and EMI requirements. But the basic principle is that the resistors, capacitors or ferrite beads added due to EMI cannot cause some electrical characteristics of the signal to not meet the specifications. Therefore, first use the techniques of arranging routing and PCB stacking to solve or reduce EMI problems, such as routing high-speed signals on the inner layer. Only then use resistors, capacitors or ferrite beads to reduce damage to the signal.

    1. How to solve the contradiction between manual routing and automatic routing of high-speed signals?

    Most of the current powerful routing software’s automatic routing tools have set constraints to control the winding method and the number of vias. The winding engine capabilities and constraint setting items of various EDA companies are sometimes very different. For example, whether there are enough constraints to control the winding method of the serpentine, whether the routing spacing of the differential pair can be controlled, etc. This will affect whether the routing method generated by automatic routing can meet the designer’s ideas. In addition, the difficulty of manually adjusting the routing is also related to the ability of the winding engine. For example, the pushing ability of the routing, the pushing ability of the via, and even the pushing ability of the routing to the copper plating, etc. Therefore, choosing a routing tool with a strong winding engine capability is the solution.

    1. About test coupon.

    The test coupon is used to measure the characteristic impedance of the produced PCB board with TDR (Time Domain Reflectometer) to see if it meets the design requirements. Generally, the impedance to be controlled is single line and differential pair. Therefore, the trace width and line spacing (when there is a differential pair) on the test coupon should be the same as the line to be controlled. The location of the ground point during measurement is important. In order to reduce the inductance of the ground lead, the grounding point of the TDR probe is usually very close to the probe tip, so the distance and method between the point where the signal is measured on the test coupon and the ground point should be consistent with the probe used.

    1. In high-speed PCB design, the blank area of ​​the signal layer can be copper-plated, and how should the copper of multiple signal layers be distributed in grounding and power supply?

    Generally, the copper plating in the blank area is mostly grounded. However, when plating copper next to high-speed signal lines, pay attention to the distance between the copper plating and the signal line, because the copper plating will reduce the characteristic impedance of the trace a little. Also be careful not to affect the characteristic impedance of other layers, such as in the dual strip line structure.

    1. Can the signal line on the power plane be calculated using the microstrip line model? Can the signal between the power and ground planes be calculated using the stripline model?

    Yes, both the power plane and the ground plane must be considered as reference planes when calculating the characteristic impedance. For example, a four-layer board: top layer-power layer-ground layer-bottom layer. At this time, the model of the characteristic impedance of the top layer routing is a microstrip line model with the power plane as the reference plane.

    1. Can the automatic generation of test points on high-density printed circuit boards by software generally meet the test requirements of mass production?

    Whether the test points automatically generated by general software meet the test requirements depends on whether the specifications for adding test points meet the requirements of the test equipment. In addition, if the routing is too dense and the specifications for adding test points are strict, it may not be possible to automatically add test points to each line. Of course, the places to be tested need to be filled manually.

    1. Will adding test points affect the quality of high-speed signals?

    As for whether it will affect the signal quality, it depends on the way of adding test points and how fast the signal is. Basically, the additional test point (without using the existing via or DIP pin as the test point) may be added to the line or a short line may be pulled out from the line. The former is equivalent to adding a very small capacitor to the line, and the latter is an additional branch. Both situations will have some impact on the high-speed signal, and the degree of impact is related to the frequency speed of the signal and the edge rate of the signal. The magnitude of the impact can be known through simulation. In principle, the smaller the test point, the better (of course, it must meet the requirements of the test equipment) and the shorter the branch, the better.

    1. How should the ground wires between the boards of a system be connected when several PCBs are connected to each other?

    When the signals or power supplies between the PCB boards are in operation, for example, when the power supply or signal from board A is sent to board B, there will be an equal amount of current flowing back from the ground layer to board A (this is Kirchoff current law). The current on the ground layer will flow back to the impedance. Therefore, at each interface where the power supply or signal is connected to each other, the number of pins allocated to the ground layer should not be too small to reduce the impedance, so as to reduce the noise on the ground layer. In addition, the entire current loop can be analyzed, especially the part with larger current, and the connection method of the ground layer or ground wire can be adjusted to control the flow of current (for example, create low impedance at a certain place to let most of the current flow through this place) to reduce the impact on other more sensitive signals.

    You may also like

    Fast Turn PCB Prototype | PCB Design & PCB Manufacturer
    Saturday, September 28th, 2024

    What is Fast Turn PCB?

    Fast turn PCB refers to a process where printed circuit boards are manufactured in a much shorter time frame compared to the standard process. This expedited service is often used during the prototyping phase, where companies need to validate designs quickly before moving on to mass production. The process is designed to keep pace with the rapidly changing demands of industries like consumer electronics, automotive, aerospace, and telecommunications. Fast turn PCB prototypes are not just a luxury; they are often necessary to meet tight deadlines and ensure product success.

    Advantages of Fast Turn PCB Prototypes

    The most obvious benefit of fast turn PCB prototypes is speed. However, the advantages extend far beyond just saving time:

    Quicker Fabricate Cycles: When a design change is necessary, waiting weeks for a new PCB is no longer acceptable. Fast turn PCB allows you to make design tweaks and receive updated prototypes in a matter of days. This reduces downtime and lets your team stay productive.

    Early Issue Detection: When you get your prototype faster, it means you can start testing sooner. This leads to earlier detection of potential issues, allowing you to resolve them before the design moves into mass production. Catching problems early minimizes the risk of costly errors.

    Faster Time to Market: In industries where technology changes quickly, getting a product to market before your competitors is vital. Fast turn PCBs enable faster product development, giving you an edge in launching new and innovative products ahead of your competitors.

    Design Flexibility: Quick prototyping means you’re free to experiment with different designs without losing valuable time. Whether you’re optimizing a layout or testing new materials, fast turn PCBs provide the flexibility you need to find the perfect solution.

    Increased Customer Confidence: For those working with clients, the ability to quickly provide prototypes can enhance customer relationships. When you demonstrate speed and reliability, clients gain confidence in your ability to deliver high-quality final products.

    Our Quick Turnaround PCB Services Include

    • PCB Prototype Assembly
    • Rigid-Flex PCBs
    • HDI PCB Fabrication
    • Flexible PCBs
    • PTFE Teflon PCBs
    • Heavy-copper PCBs & Busbar PCB
    • Metal Core PCBs
    • BGA Pad pitch down to 0.15mm
    • Cavity Process
    • Back drill Process
    • IC substrate
    • Extra thin PCBs
    • Ceramic PCBs
    • Drone PCB/Bluetooth PCB
    • High speed PCB
    • RF PCB
    • High Tg PCB
    • Impedance control PCB

    Best Technology’s Typical Turnaround Lead Time for Fast Turn PCB

    Our commitment to speed is reflected in our turnaround times. For basic, single-layer PCBs, we can often deliver in as little as 24 hours. More complex designs, such as multi-layer boards or rigid-flex PCBs, may take 3 to 5 days. No matter the complexity of your design, we work diligently to meet your timeline without compromising quality. More details please see below chart:

    Prototype (<m2)LayersNormal ServiceExpedited Service
    FR4 PCB1 Layer1-2 Days24 Hours
    2 Layers1-2 Days24 Hours
    4 Layers2-3 Days48 Hours
    6 Layers3-4 Days72 Hours
    8 Layers6-8 Days72-96 Hours
    10 Layers10-12 Days120-168 Hours
    HDI (1+N+1, 2+N+2)2.5-3.5 WeeksTBD

    This fast pace doesn’t mean we cut corners. Every PCB prototype undergoes rigorous testing to ensure it meets the highest quality standards. From initial design review to final inspection, we ensure that your prototype will perform exactly as expected.

    Custom Quote for Fast Turn PCB Prototypes

    If you have specific requirements or a tight deadline, we offer custom quotes tailored to your project. Simply provide us with your design files, including details like layer count, material type, and any specific finishing options, and we’ll give you a competitive quote with a guaranteed delivery date. Our team is ready to work with you to find the best solution for your project’s unique needs.

    Factors That Affect Lead Time of PCB Prototypes

    While we strive to meet tight deadlines, there are several factors that can influence the lead time for your PCB prototype:

    • Design Complexity

    You must know, the more layers and components your PCB requires, the longer it may take to manufacture. Single-layer boards can be produced quickly, while multi-layer designs or HDI boards typically take more time.

    • Material Availability

    Certain materials, like high-frequency laminates or specific copper weights, may not always be immediately available. If your design requires specialized materials, it’s best to check availability early with Best Team in the process to avoid delays.

    • Finishing Options

    Different surface finishes require different processing times. For example, ENIG or immersion silver might take longer than standard HASL finishes. It’s important to choose a finish that fits both your timeline and your design needs.

    • Quality Assurance Testing

    If your design requires additional testing or certifications, this can add time to the process. However, testing is critical to ensure that your prototype meets all necessary performance and safety standards. Best Technology always perform strict testing to control the PCB quality.

    Prototype PCB Assembly Services

    Beyond manufacturing the PCB itself, we also offer prototype assembly services. This means that once your PCB is produced, we can quickly assemble all the necessary components, giving you a fully functional prototype in a short amount of time. Our assembly services include both surface-mount (SMT) and through-hole technology (THT) processes.

    By combining fast turn PCB production with our assembly services, you save valuable time and resources, as you don’t need to coordinate between multiple vendors. We handle everything in-house, ensuring a smooth process from start to finish.

    Choosing the Right Fast Turn PCB Prototype Manufacturer

    When it comes to selecting a fast turn PCB manufacturer, you want to partner with a company that not only offers speed but also reliability and quality. Rushing a prototype through the production process without the proper quality checks can lead to poor performance and wasted time.

    At Best Technology, we are proud of our reputation for delivering high-quality prototypes quickly. Our team of experienced engineers and technicians ensures that every prototype is carefully reviewed and tested before it leaves our facility. We use only the highest-quality materials and components, so you can trust that your prototype will perform as expected.

    Additionally, our customer service team is always available to answer your questions, offer technical support, and provide updates on your project’s progress.

    Why Should You Choose Best Technology as Your Preferred Partner?

    At Best Technology, we don’t just manufacture PCBs — we create solutions. Our fast turn PCB services are designed to help you move through the product development process faster, without compromising on quality. We offer:

    1. With turnaround times as fast as 24 hours for simple designs, we help you meet even the most demanding deadlines.

    2. Every prototype we produce undergoes strict quality control and it can meet your exact specifications.

    3. We can accommodate a wide range of PCB types and materials, including flexible PCBs, HDI boards, and high-frequency designs.

    4. Our team is dedicated to helping you one-time succeed. From design review to final delivery, we’re here to support you every step of the way.

    You may also like

    Single layer PCB manufacturer | Single sided PCB Design&Prototype
    Friday, September 27th, 2024

    What is a single-sided PCB circuit board

    Single-sided PCB circuit board is a type of printed circuit board. Only one side of the PCB board has circuits (it can have holes or not), and the other side is a substrate or directly covered with insulating ink. There is no circuit and the whole board is transparent under strong light (except for individual boards and special process requirements). The cross section only contains copper foil on the side with circuits.
    Single-sided PCB circuit board is obtained by etching copper-clad board. Copper-clad board consists of board base and copper foil. The board base is usually made of insulating materials such as glass fiber, and is covered with a layer of copper foil (usually oxygen-free copper).

    Single layer PCB manufacturer

    Single layer PCB manufacturer Best Technology has offered high-quality PCBs and the best PCB assembly & box building service all over the world since 2006. We are professional fabricator on PCB prototype, IPC Class III standard are available. You can get high-quality PCB board and PCBA at a very reasonable price.

    Single layer PCB manufacturer

    Single layer PCB design
    Best Technology excels in PCB design, perform PI analysis, SI analysis, EMC test and DFM tests to ensure one-time successed PCB design. Over 20 professional engineers, all of them has more than 15+ years experience in PCB, we make sure every design is optimized for performance and manufacturability.

    Single layer PCB prototype
    As an industry-leading PCB prototype manufacturer, Best Technology offers 24 hours quick turn PCB prototype, PCB assembly and reliable small-batch PCB production. Free technical support and VIP one-to-one service.

    Single layer PCB production
    With over 18 years PCB manufacture experience, we dedicated to provide highest quality PCB for customers. We offer turnkey service from PCB design, PCB layout, PCB prototype, mass production and PCB assembly. Contact us to get an instant quote.

    Single layer PCB assembly
    Professional PCB assembly service, includes DFM/DFA checks, function/ICT testing, X-RAY, Online dual AOI, nitrogen reflow oven. 10+ SMT lines, free passive parts and Thorough Inspections! SMT, Thru-hole, BGA, QFN Assembly at Low Prices! No MOQ, complex and difficulty designs welcome!

    Single-sided PCB production process

    1. Cutting
    2. Drilling or punching
    3. Screen printing circuit anti-etching pattern or using dry film
    4. Curing inspection and board repair
    5. Screen printing solder mask pattern (commonly used green oil)
    6. Screen printing character mark pattern, UV curing
    7. Preheating, punching and appearance
    8. Electrical open and short circuit test
    9. Pre-coating flux anti-oxidant (drying) or tin spraying hot air leveling
    10. Packaging and delivery

    Single-sided PCB production capacity

    Item Content
    Material type : XPC  FR-1  FR-4  CEM-1
    Surface finish : ENIG gold, HASL Immersion Tin, Chemical Silver OSP
    Layer No : Single side, Multilayer PCB
    Max PCB size: 1500mm*600mm
    Min PCB size: 5mm*5mm
    Min space/width: 0.1mm
    Warp and Twist: ≤0.5%(board thickness:1.6mm,PCB size : 300mm*300mm)
    Board thickness: 0.3-5.0mm
    Copper thickness: 35um-240um
    Outline Tolerance: ±0.15mm
    V-CUT Precision: ±0.1mm
    Capacity: 80000㎡/Month
    PTH Dia tolerance: ±0.076mm
    Outline tolerance: CNC :±0.1mm  punch:±0.15mm

    What are the single-sided PCB materials?

    What are the single-sided PCB materials

    What are the single-sided PCB materials

    Phenolic paper substrate
    Phenolic paper substrate (commonly known as cardboard, plastic board, V0 board, flame retardant board, red-letter copper clad board, 94V0). The most commonly used product models of phenolic paper-based copper clad boards are FR-1 (flame retardant) and XPC (non-flame retardant). Single-sided copper clad boards can be easily judged from the color of the characters on the back of the board. Generally, red characters are FR-1 (flame retardant) and blue characters are XPC (non-flame retardant). This type of board is the cheapest compared to other types of boards.

    Epoxy fiberglass cloth substrate
    Epoxy fiberglass cloth substrate (commonly known as: epoxy board, fiberglass board, fiberboard, FR4), epoxy fiberglass cloth substrate is a type of substrate with epoxy resin as adhesive and electronic grade glass fiber cloth as reinforcing material. Its bonding sheet and inner core thin copper clad board are important substrates for making multi-layer printed circuit boards. The working temperature is high and its own performance is less affected by the environment. In terms of processing technology, it has great advantages over other resin fiberglass cloth substrates. This type of product is mainly used for double-sided PCBs. It is also about twice as expensive as phenolic paper substrates, and the commonly used thickness is 1.5MM.

    Composite substrates
    Composite substrates (commonly known as powder boards, etc., cem-1 boards are also called 22F in some places in China) mainly refer to CEM-1 and CEM-3 composite-based copper-clad boards. Copper-clad boards made of wood pulp fiber paper or cotton pulp fiber paper as core reinforcement materials and glass fiber cloth as surface reinforcement materials, both of which are impregnated with flame-retardant epoxy resin, are called CEM-1. Copper-clad boards made of glass fiber paper as core reinforcement materials and glass fiber cloth as surface reinforcement materials, both of which are impregnated with flame-retardant epoxy resin, are called CEM-3. These two types of copper-clad boards are the most common composite-based copper-clad boards. This type of board is cheaper than FR4 type boards.

    Single-sided PCB circuit board price

    Since the cost of single-sided PCB circuit boards is affected by many factors, including the cost of raw materials, production cost, production process, special requirements, etc., its exact pricing needs to be negotiated with its single-sided PCB circuit board supplier. The general unit price calculation formula is: (length MM) × (width MM) × 0.01 × unit price (yuan/square meter) ÷ 10000 (rounded to 3 decimal places)
    For specific single-sided PCB quotes, please consult bestpcbs.

    Single-sided PCB circuit board price

    Single-sided PCB circuit board price

    Single-sided PCB applications and features

    Single-sided PCBs are increasingly widely used due to their many unique advantages;
    High density: For decades, high-density printed boards have developed with the improvement of integrated circuit integration and the advancement of installation technology.
    High reliability: Through a series of inspections, tests and aging tests, PCBs can work reliably for a long time (usually 20 years).
    Designability: According to the requirements of various performances (electrical, physical, chemical, mechanical, etc.) of single-sided boards, printed boards can be designed in a short time and efficiently through design standardization.
    Manufacturability: Through modern production management, standardization, scale (quantification), automation, etc. can be achieved to ensure the consistency of product quality.
    Testability: Complete test methods, standards and various test equipment and instruments have been established to detect and evaluate the qualification and service life of a single PCB.
    Assembly: Circuit boards facilitate standardized assembly of various components to achieve automated, large-scale mass production. At the same time, circuit boards and various component assemblies can be assembled into larger components and systems, and even complete machines.

    Maintainability: Circuit boards and various component parts are manufactured with standardized designs and scales. If a system fails, components can be replaced quickly and conveniently. The system can recover quickly due to this flexibility. More examples include system miniaturization, lightweight, high-speed signal transmission, etc.

    FAQ About single sided pcb

    FAQ About single sided pcb

    Q: When laying out the board, if the lines are dense, there may be more vias, which will of course affect the electrical performance of the board. How can I improve the electrical performance of the board?
    A: For low-frequency signals, vias are not a big deal, but for high-frequency signals, try to reduce vias. If there are many lines, you can consider multi-layer boards;

    Q: Is it better to add more decoupling capacitors on the board?
    A: Decoupling capacitors need to be added with appropriate values ​​at appropriate locations. For example, add them to the power supply port of your analog device, and use different capacitance values ​​to filter out stray signals of different frequencies;

    Q: What are the standards for a good board?
    A: Reasonable layout, sufficient power redundancy of power lines, high-frequency impedance, and simple low-frequency routing.

    Q: How much difference do through holes and blind holes have on signals? What are the application principles?
    A: Using blind or buried holes is an effective way to increase the density of multi-layer boards, reduce the number of layers and board size, and greatly reduce the number of plated through holes. But in comparison, through holes are easy to implement in terms of process and have lower costs, so through holes are generally used in designs.

    Q: What kind of layout can achieve the best heat dissipation effect?
    A: There are three main sources of heat in PCB: (1) heat generated by electronic components; (2) heat generated by the PCB itself; (3) heat transmitted from other parts. Among these three heat sources, the heat generated by components is the largest and is the main heat source, followed by the heat generated by the PCB board. The heat transmitted from the outside depends on the overall thermal design of the system and is not considered for the time being. The purpose of thermal design is to take appropriate measures and methods to reduce the temperature of components and PCB boards so that the system can work normally at a suitable temperature. This is mainly achieved by reducing heat generation and accelerating heat dissipation.

    Q: Can you explain the proportional relationship between the line width and the size of the matching via?
    A: This is a good question. It is difficult to say that there is a simple proportional relationship because the two simulations are different. One is surface transmission and the other is ring transmission. You can find a via impedance calculation software on the Internet, and then keep the impedance of the via consistent with the impedance of the transmission line.

    Q: In an ordinary PCB circuit board with an MCU control, but without high current and high-speed signal requirements, is it better to lay a layer of ground wire around the outermost edge of the PCB to wrap the entire circuit board?
    A: Generally speaking, just lay a complete ground.

    Q: How to deal with the avoidance of vias during the wiring process of high-speed PCB, what good suggestions are there?
    A: For high-speed PCB, it is best to make fewer vias and solve the need to increase vias by adding signal layers.

    Q: How to select the thickness of the power trace in PCB board design? Are there any rules?
    A: You can refer to: 0.15×line width (mm)=A, and copper thickness also needs to be considered.

    Q: When digital circuits and analog circuits are on the same multi-layer board, should analog ground and digital ground be arranged on different layers?
    A: This is not necessary, but analog circuits and digital circuits should be placed separately.

    Q: How many vias are generally suitable for digital signal transmission? (Signals below 120Mhz)
    A: It is best not to exceed two vias.

    You may also like

    What is the thermal conductivity of copper practical?
    Wednesday, September 25th, 2024

    In the vast field of materials science, copper occupies an important position with its excellent performance. Among them, the thermal conductivity of copper is particularly eye-catching, becoming the preferred material for heat conduction in many fields. Copper plays an important role in electronic equipment, heat exchangers, construction and other fields.

    What is the thermal conductivity value for copper?

    The thermal conductivity of copper is about 401W/m·K. ‌

    What is the thermal conductivity value for copper?

    The thermal conductivity refers to the heat transferred through 1 square meter of area in 1 second under stable heat transfer conditions, with a temperature difference of 1 degree (K, ℃) on both sides of a 1 meter thick material. The unit is watt/meter·degree (W/(m·K)).

    The thermal conductivity is a parameter to measure the thermal conductivity of a material. The larger the value, the better the thermal conductivity. Due to its high thermal conductivity, copper is often used to make radiators, heat conductors and other applications that require efficient heat transfer.

    What is the thermal conductivity of copper at 25 C?

    The thermal conductivity of copper is affected by many factors. On the one hand, temperature is an important influencing factor. Generally speaking, the thermal conductivity of copper decreases with increasing temperature.

    At 25℃, the thermal conductivity of copper is about 401W/m.K, and at 100℃, the thermal conductivity of copper is 377W/m・K.

    How do you measure thermal conductivity of copper?

    The thermal conductivity of copper is usually measured by the steady-state method. ‌

    The steady-state method is a classic method for measuring the thermal conductivity of thermal insulation materials. It uses the equilibrium state in which the heat transfer rate is equal to the heat dissipation rate during stable heat transfer.

    This method has a simple and clear principle and high accuracy. Although the measurement time is long and the environmental conditions are high, it is suitable for measuring thermal conductivity materials at medium temperatures, especially for low thermal conductivity materials such as rock, plastic, rubber, glass, and thermal insulation materials.

    In the steady-state method, commonly used methods include heat flow method, protected heat flow method, and protected hot plate method. The basic principles of these methods are similar, but some standards are formulated for different thermal insulation materials, and the test results are similar.

    What metal has the highest thermal conductivity?

    Silver has the highest thermal conductivity.

    Among metals, silver has a thermal conductivity of 411W/(m·K), which is the highest value among all metals. This property of silver makes it the metal with the best thermal conductivity.

    In contrast, copper has a thermal conductivity of 401W/(m·K), which is also very high, but still slightly lower than silver. Other metals such as gold and aluminum have thermal conductivities of 315W/(m·K) and 237W/(m·K), respectively, which are lower than silver and copper. Therefore, from the perspective of thermal conductivity, silver is undoubtedly the metal with the best thermal conductivity.

    In addition, although the thermal conductivity of copper is also very high, reaching 401W/(m·K), second only to silver, among pure metals, the thermal conductivity of silver is still the highest. However, in practical applications, copper is widely used because of its good conductivity and relatively low cost.

    Which metal is the poorest conductor of heat?

    The metal with the worst thermal conductivity is iron. ‌

    Among metal materials, the thermal conductivity of iron is 0.163, while that of copper and silver is, and that of aluminum is 0.5. These data indicate that the thermal conductivity of iron is significantly lower than that of other common metals. Therefore, it can be concluded that iron is the metal with the worst thermal conductivity‌.

    Why copper has highest thermal conductivity?

    Copper has the highest thermal conductivity‌, mainly because of its unique physical and chemical properties. The superior thermal conductivity of copper is mainly attributed to its crystal structure and electronic properties.

    What is the thermal conductivity value for copper?

    Copper is a metal with good electrical and thermal conductivity, which is due to the presence of a large number of free electrons in the crystals of copper. These free electrons can effectively transfer heat when colliding with metal cations in the crystal, making copper extremely thermally conductive.

    The thermal conductivity of copper is about 400 W/m·K, which means that copper transfers much more heat per unit time than most other materials. The high thermal conductivity allows copper to quickly transfer heat away, with efficient heat dissipation.

    What happens to copper when it is heated?

    When copper is heated, its volume increases, its mass remains unchanged, and its density decreases. ‌

    When copper is heated, its volume increases due to the property of thermal expansion and contraction. This is because when the copper block is heated, the distance between atoms increases, resulting in an increase in volume. At the same time, the mass of copper is a property of matter, which is only related to the amount of matter contained, and has nothing to do with the position, state, shape, and temperature of the object. Therefore, the mass of copper remains unchanged after heating.

    In addition, when copper is heated in the air, if it reacts with oxygen, black copper oxide (CuO) will be generated on the surface. This chemical change will cause the color of copper to change from red to black.

    In summary, when copper is heated, not only will its volume increase, its mass remain unchanged, and its density decrease, but it will also react with oxygen to generate copper oxide when heated in the air, resulting in a change in surface color.

    Why does copper turn green?

    Copper turns green because it is oxidized in the air to form copper rust. The main component of this copper rust is basic copper carbonate, which is green in color. ‌

    Copper will be oxidized in the air to form copper rust. This rusting process is the result of a combination of factors, including the reaction of copper with oxygen, water vapor and carbon dioxide in the air.

    Specifically, when copper is exposed to oxygen, water and carbon dioxide in humid air for a long time, a chemical reaction will occur to generate basic copper carbonate (Cu2(OH)2CO3), a green inorganic compound, so a green rust layer will form on the copper surface.

    This process not only occurs on the surface of copper, but also because the main component of copper rust is basic copper carbonate, the color of copper rust is green, which makes the appearance of copper products appear green.

    Copper has become the preferred material for heat conduction in many fields due to its high thermal conductivity, good processing performance and stable thermal conductivity. With the continuous advancement of science and technology, it is believed that copper will continue to play an important role in future development.

    You may also like