pcb
Home > Blog

Archive for the ‘PCB News’ Category

What is PCB prototyping? & PCB assembly Manufacturer
Tuesday, January 14th, 2025

What is PCB prototyping? PCB prototype is a preliminary printed circuit board sample made according to the circuit design. It is used to realize the basic functions of the circuit and perform functional testing and verification. It usually adopts a rapid production method and has a relatively simple appearance and structure.

What is PCB prototyping? & PCB assembly Manufacturer

What is PCB Prototyping?

PCB prototyping is the process of creating a preliminary model of a PCB to test its functionality and design before mass production. This step is essential in electronics development, helping engineers and manufacturers identify and address design flaws early on.

Prototyping allows for the evaluation of components, circuits, and connections in a controlled setting. It ensures that the final PCB design performs as intended, saving time and reducing costs associated with errors.

What is the Point of Prototyping?

Prototyping serves as a safety net in the PCB manufacturing process. By creating a prototype:

  • Flaws are identified early: It prevents costly errors in large-scale production.
  • Design validation: Ensures that the circuit works as expected.
  • Component testing: Verifies compatibility and performance of components.
  • Cost efficiency: Saves resources by addressing issues before production.

This process bridges the gap between theoretical design and practical application, reducing risks.

Why Prototype Circuits Before Making a PCB?

Testing circuits before creating a PCB is vital. It allows:

  • Performance Evaluation: Determines how circuits function under real-world conditions.
  • Optimization: Refines layouts to improve performance and reliability.
What is PCB prototyping? & PCB assembly Manufacturer
  • Debugging: Identifies and fixes potential electrical issues.
  • Risk Mitigation: Ensures the design meets safety and compliance standards.

By prototyping, you ensure a smooth transition from design to final product.

How to Make PCB Prototyping?

The process of PCB prototyping includes several steps:

  • Design Creation: Use a PCB design tool like Altium Designer or KiCAD.
  • Material Selection: Choose materials suitable for your application.
  • Schematic Development: Draw circuit diagrams and plan connections.
  • Layout Design: Arrange components on the PCB for optimal performance.
  • Fabrication: Manufacture the prototype using a reliable service.
  • Testing: Test the prototype to identify and resolve any issues.

Each step is crucial to ensure the prototype meets your requirements.

How to Use a PCB Prototype Board?

A PCB prototype board is a platform for testing and validating designs. To use it effectively:

  • Prepare the schematic: Transfer the design to the board.
  • Assemble components: Place components in the designated positions.
What is PCB prototyping? & PCB assembly Manufacturer
  • Connect traces: Solder the components and complete the circuit.
  • Test functionality: Verify the board’s performance.

Prototype boards simplify the testing process, allowing for quick adjustments.

How Do Prototype PCBs Work?

Prototype PCBs work as functional testbeds for new designs. They replicate the final product but are made with less expensive materials and simpler processes. Engineers use them to:

  • Test circuit connectivity.
  • Assess signal integrity.
  • Verify design specifications.

Successful prototypes pave the way for full-scale production.

What is the Best PCB Design Tool?

Choosing the right PCB design tool is key to successful prototyping. Popular options include:

  • Altium Designer: Comprehensive and professional.
  • KiCAD: Open-source and user-friendly.
  • Eagle: Widely used with extensive libraries.
  • OrCAD: Robust for complex designs.

Select a tool that matches your project’s complexity and budget.

How Much Does a PCB Prototype Cost?

The cost of a PCB prototype depends on several factors:

  • Size and complexity: Larger and more complex designs cost more.
  • Material choice: High-quality materials increase costs.
  • Turnaround time: Faster delivery options come at a premium.
  • Quantity: Small batches are often more expensive per unit.

On average, costs range from $50 to several hundred dollars per board.

What is the difference between PCB prototype and breadboard?

FeaturePCB PrototypeBreadboard
DurabilityLong-lastingTemporary
PerformanceHigh performance, precise connectionsLimited to basic circuits
CustomizationFully customizableRestricted by design
ApplicationsSuitable for production testingIdeal for initial testing
What is PCB prototyping? & PCB assembly Manufacturer

While breadboards are ideal for early experiments, PCB prototypes are essential for final design validation.

Why Choose Us as Your PCB Manufacturer?

At Best Technology, we excel in providing comprehensive PCB prototyping and manufacturing solutions. With over 18 years of experience, we ensure:

  • High-quality fabrication: Advanced techniques for superior results.
  • Customization options: Tailored designs to meet your needs.
  • Quick turnaround: Rapid prototyping to keep your project on track.
  • Global presence: Facilities in China, Vietnam, and the US.

Our team is dedicated to turning your ideas into reality. For expert PCB prototype services, contact us at sales@bestpcbs.com

Conclusion:

PCB prototyping is a crucial step in electronics design. It ensures accuracy, performance, and reliability, saving time and costs. For top-tier PCB prototype fabrication services, reach out to sales@bestpcbs.com today. Let us help you bring your ideas to life.

You may also like

What is Bus Bar PCB for Battery? & High current bus bar
Friday, January 10th, 2025

What is Bus Bar PCB for Battery? The battery busbar PCB is a circuit board used for battery pack connection and management. It is mainly composed of signal acquisition components (such as FPC, PCB, FFC, etc.), plastic structural parts, copper and aluminum bars, etc., and is connected into a whole through processes such as hot pressing or riveting.

What is Bus Bar PCB for Battery? & High current bus bar

What is a Battery Bus Bar?

A battery bus bar is a conductive strip or block that connects different battery cells or battery packs to each other, creating an efficient and secure path for current to flow.

In battery systems, especially those used in electric vehicles (EVs) and renewable energy storage systems, bus bars serve as the main distribution point for the electrical current.

Typically, bus bars are designed to handle high current loads and are placed between multiple battery cells or batteries in series or parallel configurations. The goal is to create a stable connection that allows for optimal performance, minimized resistance, and safe operation.

Battery bus bars are used in systems where batteries need to be connected in such a way that the current flows seamlessly, efficiently, and safely from one cell or pack to another. They are often made from conductive materials that minimize resistance while ensuring durability and safety under high load conditions.

What is a Bus Bar in PCB?

A bus bar in PCB design refers to a conductive path that carries high electrical current across the board. Unlike typical trace wiring, which is designed for low- to medium-current applications, bus bars on a PCB are intended to carry significant amounts of current, often across larger areas of the circuit board.

Bus bar PCBs are used in applications where multiple high-current connections are needed, such as in power electronics, motor drives, and battery management systems. These bus bars act as a pathway for electricity to flow efficiently from one component to another. They are particularly crucial in battery systems, where power distribution needs to be optimized for both performance and safety.

What is Bus Bar PCB for Battery? & High current bus bar

In PCB design, bus bars are created by using thicker copper layers, wider traces, or even copper strips that are physically mounted onto the board. This allows the board to handle higher currents without excessive heating or power loss.

Why Use Bus Bar on PCB?

Using a bus bar on a PCB offers several significant benefits:

  • Improved Current Carrying Capacity: Bus bars are designed to handle higher currents than typical PCB traces, allowing them to support more powerful devices without risking overheating or damage.
  • Reduced Resistance: Since bus bars typically have a larger surface area compared to regular PCB traces, they reduce the overall resistance within the circuit. Lower resistance means less energy lost in the form of heat and more efficient power distribution.
  • Better Thermal Management: Bus bars can distribute heat more evenly due to their wider, thicker structure. This helps in managing the heat generated by high-current flow, ensuring the PCB doesn’t overheat and cause damage to the components.
  • Simplified Design: By incorporating bus bars, designers can reduce the need for complex wiring and interconnections. Bus bars provide a clear, direct path for current, which makes the overall design cleaner and easier to manage.
  • Increased Safety: Bus bars help prevent circuit failures by distributing power efficiently and maintaining proper voltage levels across all components. This ensures the PCB and the devices connected to it are protected from power surges and voltage drops.

What are the Pros and Cons of Busbars in PCB?

Like any technology, bus bars in PCB applications come with their advantages and challenges.

Pros:

  • High Current Handling: Bus bars can handle much higher currents than conventional traces, making them essential for high-power applications like battery systems, power supplies, and motor controllers.
  • Lower Power Loss: With their larger size and improved conductivity, bus bars allow for minimal energy loss due to resistance. This makes systems more efficient.
  • Enhanced Durability: Bus bars are typically more robust than regular PCB traces, offering greater durability and resistance to wear and tear, especially in high-stress environments.
  • Easier Assembly: Bus bars simplify PCB design and assembly by reducing the need for individual connections between components, making the overall design process cleaner and faster.
What is Bus Bar PCB for Battery? & High current bus bar
  • Thermal Management: The larger surface area of bus bars allows for better dissipation of heat, reducing the risk of thermal damage to the board and components.

Cons:

  • Increased Board Size: The addition of bus bars requires more space on the PCB, which could be a limitation in compact designs.
  • Cost: Due to their size and the materials used, bus bars can increase the cost of the PCB, especially in applications that require high-current handling.
  • Design Complexity: While bus bars simplify certain aspects of the design, they can also complicate others, particularly when trying to balance current distribution and thermal dissipation.

Overall, the pros of using bus bars often outweigh the cons, especially in high-power systems where efficiency and safety are critical.

Why is It Called a Bus Bar?

The term “bus bar” comes from the word “bus,†which refers to a central electrical point that distributes power to various components or circuits. The word “bar†simply refers to the physical shape of the conductor, which is often a flat or rectangular piece of metal. Therefore, a bus bar is essentially a flat, conductive strip or bar used to distribute electrical power.

In PCB applications, bus bars provide the same function as their larger counterparts in electrical distribution systems. They act as a central hub that ensures current is delivered where it’s needed, in a way that’s efficient and safe.

What Material is Battery Bus Bar?

The material used for battery bus bars is crucial for ensuring efficiency and safety. The most commonly used materials include:

  • Copper: Copper is the most popular material for bus bars due to its excellent electrical conductivity. It also offers good corrosion resistance, making it ideal for use in battery systems where performance and longevity are essential.
  • Aluminum: While not as conductive as copper, aluminum is a lightweight alternative that can still handle high currents.
  • Gold-Plated Copper: In high-end or specialized applications, gold-plated copper may be used for bus bars to enhance conductivity and prevent oxidation. However, this material is generally more expensive.
  • Tinned Copper: Tinned copper offers enhanced corrosion resistance, making it suitable for use in environments where moisture or chemicals might be present.
  • Brass or Silver: In some cases, brass or silver may be used for specialized applications that require specific properties like high conductivity or low contact resistance.

The choice of material largely depends on the performance requirements, environmental conditions, and budget of the application.

How to Choose a Bus Bar?

Choosing the right bus bar for a PCB, particularly for battery systems, depends on several key factors:

  • Current Handling Capacity: The first and most important consideration when selecting a bus bar is the amount of current it needs to handle. Choose a bus bar that is rated for the maximum current expected in the application.
  • Material: The material of the bus bar will directly impact its conductivity, durability, and cost. Copper is commonly used due to its excellent conductivity, but other materials like aluminum or gold-plated copper may be used for specific applications requiring resistance to corrosion or enhanced conductivity.
What is Bus Bar PCB for Battery? & High current bus bar
  • Size and Shape: Bus bars come in various sizes and shapes, depending on the PCB design and available space. The dimensions of the bus bar must match the PCB layout and provide the necessary current-carrying capacity while fitting within the design constraints.
  • Thermal Management: A good bus bar design will take heat dissipation into account. Bus bars should be thick enough to carry the required current without generating excessive heat, and the PCB layout should ensure adequate cooling.
  • Mechanical Strength: Bus bars are often subjected to mechanical stresses, especially in applications like electric vehicles or battery packs. Choose bus bars that can withstand vibration and other forces without losing their structural integrity.
  • Compliance and Safety: Finally, make sure the bus bar complies with industry standards and safety regulations, particularly if the PCB will be used in critical applications like battery management systems or medical devices.

Conclusion:

Bus bar PCBs for battery systems play a crucial role in efficient power distribution. These conductive strips or blocks ensure that current flows smoothly across battery cells and other components, enabling high-current applications like electric vehicles and renewable energy systems to operate safely and efficiently.

BEST Technology is able to build and design busbar PCB according to your specific requirements. If you want to manufacture battery busbar stiffener PCB, please contact us at sales@bestpcbs.com

You may also like

What is 0.4mm thickness PCB? Ultrathin PCB
Thursday, January 9th, 2025

What is 0.4mm thickness PCB? 0.4mm thickness PCB is an ultra-thin printed circuit board with a thickness of only 0.4 mm. This type of PCB has high requirements in design and manufacturing, because its thinness makes it easy to cause problems such as warping and deformation during processing. 0.4mm thickness PCB is usually used in electronic devices with strict requirements on space and weight. It can meet the development trend of miniaturization and thinness of modern electronic products.

What is 0.4mm thickness PCB? Ultrathin PCB

What is a 0.4mm Thickness PCB?

A 0.4mm thickness PCB refers to a printed circuit board with a thickness of 0.4 mm. ‌This thickness of PCB is generally considered to be the minimum thickness starting point for multi-layer PCB design, suitable for application scenarios that require highly integrated and compact design‌.

0.4mm PCB has the following characteristics:

  • Thin design‌: Suitable for electronic products that require highly integrated and compact design, such as smartphones, tablets and other portable devices.
  • High reliability: Due to its thin design, 0.4mm PCB performs well in complex wiring and fine design, and can provide stable electrical performance and mechanical strength.
  • ‌Cost-effectiveness‌: Although the manufacturing process is more complicated, the overall cost is relatively low because it uses less material.

0.4mm PCB is mainly used in the following fields:

  • Portable devices: Such as smartphones, tablets, wearable devices, etc., which require lightweight and powerful circuit boards.
  • High-density interconnect applications: In occasions where high integration and complex wiring are required, 0.4mm PCB provides a better solution.
  • Radio frequency identification (RFID) and smart cards: Such as RFID tags, IC cards, SIM cards, etc., these applications require circuit boards that are both thin and reliable.

What are the advantages of 0.4mm thickness PCB?

0.4mm thickness PCB has the following advantages:

  • Reduced material cost: Due to the use of less expensive materials such as copper, the material cost of 0.4mm thickness PCB is lower.
  • Compatibility with advanced technologies: PCBs of this thickness are compatible with advanced technologies such as laser direct imaging and can be used without damaging flexible circuits.
What is 0.4mm thickness PCB? Ultrathin PCB
  • High reliability: Ultra-thin PCBs can host custom repeatable routing paths, reduce rework, and have higher reliability.
  • Strong protection: The conductors on these PCBs have a polyimide cover layer to protect against a range of potentially harsh conditions, such as vibration and acceleration on the joints.
  • High durability: 0.4mm thick PCBs can withstand millions of bending cycles and are suitable for applications that require frequent bending.

In addition, 0.4mm thick PCBs are suitable for a variety of application scenarios, including RFID smart cards, IC cards, SIM cards, electronic tags, mobile phone charging modules, wearable devices, etc.

What are the disadvantages of 0.4mm thickness PCB?

The disadvantages of 0.4mm thickness PCB mainly include the following aspects:

  • Difficulty in manufacturing: Due to the thinness of 0.4mm thickness PCBs, they are easily affected by external factors during the manufacturing process, which increases the difficulty and cost of manufacturing.
  • Lower mechanical strength: Thinner PCBs are more likely to deform or be damaged when subjected to external forces, especially in environments with high-frequency vibration or mechanical shock, which may affect their stability and reliability.
  • Poor heat dissipation: Thinner PCBs have a relatively small heat dissipation area, which is not conducive to the rapid dissipation of heat, and may cause local overtemperature, affecting the stable operation of electronic components.
  • Increased welding difficulty: During the welding process, thinner PCBs are easily affected by the welding temperature, which may cause loose welding points or welding defects.
  • Signal transmission problems: Thinner PCBs may affect the integrity and transmission speed of signals due to the shorter signal path when transmitting high-frequency signals.

How to make 0.4mm thickness PCB?

There are many aspects to consider when making 0.4mm thickness PCBs.

1. Material selection

  • Substrate: Select a substrate suitable for 0.4mm thickness. Generally, 0.3mm raw materials are used to make 0.4mm PCB boards. The type of substrate is usually FR-4 or other materials suitable for thin boards.
  • Copper foil thickness: The thickness of the copper foil affects the conductivity and strength of the PCB. Common copper foil thicknesses include 1 ounce (about 35 microns), 2 ounces (about 70 microns), etc.

2. Production process

  • Cutting: Cutting large-sized copper foil boards into small pieces suitable for production.
  • Drilling: Drilling is the first process for the formal production of circuit boards, including electrical holes, mechanical holes, vias, etc. For 0.4mm thick PCBs, laser drilling may be required to achieve smaller apertures.
  • Lamination: By combining different core thicknesses and prepreg sheets, a finished PCB thickness of 0.4mm can be achieved.
  • Electroplated: Electroplated after drilling to ensure good conductivity in the hole.
  • Solder mask: Add a solder mask to the surface of the PCB to protect the copper wire from oxidation and prevent short circuits during welding.
  • Surface treatment: Common surface treatment methods include immersion gold, tin spraying, etc. to improve the conductivity and oxidation resistance of the PCB.

What are the difficulties in making a 0.4mm thick PCB?

The main difficulties in making a 0.4mm thick PCB include the following aspects:

  • Lamination difficulties: As the copper thickness increases, the line gap is deeper, and more resin filling is required, which increases the complexity and cost of processing.
  • Drilling difficulties: As the board thickness increases, the drilling difficulty increases. Thick copper boards are usually thicker than 2.0mm, and new knives and segmented drilling techniques are required to reduce the difficulty when drilling.
  • Thermal management: Due to the increase in power consumption of electronic devices, thermal management has become a key challenge. When designing, it is necessary to consider appropriate heat dissipation structures and heat dissipation component layouts to ensure that components work properly and avoid thermal damage.
  • ‌Signal integrity‌: High-frequency signals and high-speed digital signal transmission need to consider issues such as signal loss, impedance matching, and interlayer crosstalk.
  • ‌Electromagnetic compatibility (EMC) and electromagnetic interference (EMI): Measures need to be taken to reduce electromagnetic radiation and improve anti-interference capabilities.
  • Process and material selection: Choose the appropriate printing method and substrate material to ensure that the circuit board that meets the requirements is manufactured.

How to deal with the warping problem of 0.4mm thick PCB?

There are several ways to deal with the warping problem of 0.4mm thick PCB:

  • Choose high Tg board: Boards with higher Tg can withstand higher temperatures and reduce warping caused by temperature changes. Although the cost is higher, it can effectively resist high temperature deformation.
  • Reduce via restrictions: The via design in multilayer boards should be reasonable to avoid excessive restrictions on the cold expansion and contraction of the board and reduce warping.
  • Control temperature changes: Appropriately reduce the reflow temperature or slow down the heating and cooling speed to reduce the expansion and contraction of materials caused by temperature changes.
  • Use laser drilling technology: Laser drilling can reduce stress during processing and reduce the risk of warping.
  • Mechanical leveling: Use a flattening machine to mechanically level the PCB, which is suitable for PCBs with moderate warping.

The following aspects can be used to deal with the warping problem of 0.4mm thickness PCB:

What should I pay attention to when using 0.4mm thickness PCB?

The following points should be noted when using 0.4mm thickness PCB:

  • Trace spacing and width: On 0.4mm thickness PCB, the trace spacing is usually recommended to be no less than 0.2mm to ensure stable signal transmission and reduce interference. The trace width should be designed according to the current carried. Usually the width of the power line should be between 1.2~2.5mm, and the width of the signal line should be between 0.2~0.3mm.
  • Wiring rules: In high-density and high-precision PCB design, the line width and spacing are generally set to 0.3mm. If solder mask defined (SMD) pads are used, the thickness of the traces between the pads should be appropriately reduced to avoid the problem of pad lifting during soldering or desoldering.
What is 0.4mm thickness PCB? Ultrathin PCB
  • Heat dissipation and mechanical support: For devices with high power consumption, 0.4mm thick PCBs may not be enough to provide sufficient mechanical support and heat dissipation performance. For such devices, it is recommended to choose a thicker PCB to provide better mechanical support and heat dissipation performance.
  • Design details: When designing the PCB, it should be noted that the spacing between components should be greater than 0.5mm, and the spacing between the chip pins and peripheral devices should be greater than 1.0mm. In addition, the width of the ground line should be greater than the power line to ensure a stable current supply.

0.4mm thick PCB has become an ideal choice for modern electronic products such as smartphones and wearable devices due to its ultra-thin characteristics, meeting the development needs of miniaturization and thinness. However, problems such as warping are prone to occur during production. As a professional PCB manufacturer, BEST Technology has strong manufacturing strength to ensure that each 0.4mm thick PCB effectively reduces the occurrence of warping. If you have corresponding needs, please feel free to contact us at sales@bestpcbs.com!

You may also like

What are COB led boards? COB LED Strip
Wednesday, January 8th, 2025

What are COB led boards? COB led boards are an LED light source that uses Chip On Board technology. It directly encapsulates multiple LED chips on the same substrate and then connects them to the circuit board through a special connection technology. Compared with traditional LED light sources, COB led boards share a heat dissipation substrate for multiple LED chips, which can dissipate heat more effectively and improve heat dissipation efficiency.

What are COB led boards? COB LED Strip

What are COB led boards?

COB led boards, full name Chip On Board, is a high-power LED light source that directly encapsulates multiple LED chips on an aluminum substrate.

COB led boards connect multiple LED chips in parallel, place them side by side on the same substrate, and emit and focus light by sharing the same optical lens.

COB led boards are mainly used in fields with high requirements for light efficiency and brightness, such as outdoor lighting, automotive lighting, backlighting, etc. In addition, COB led boards are also used in ultra-high-definition display solutions, especially in small micro-pitch LED display screens, which can effectively improve viewing experience and safety.

How to design COB led boards?

Designing COB (Chip On Board) led boards requires the following key steps and technical points to be considered:

1. Substrate selection

  • Material selection: Substrates are usually made of materials with high thermal conductivity and high reflectivity. Metal substrates are relatively low in cost, while ceramic substrates have better heat dissipation performance.

2. Packaging

  • Coating protective layer: Apply a layer of organic glue or resin on the LED chip and leads to protect the chip and solder joints and prevent damage to them from the external environment.
  • Lens design: According to application requirements, lenses can be added to the surface of the led boards to optimize light distribution and improve lighting effects.

3. Heat dissipation design

  • Heat dissipation structure: The heat dissipation of COB led boards mainly depends on the substrate, so the heat dissipation performance of the substrate is very important. Auxiliary heat dissipation measures such as heat sinks and heat pipes can also be used to further improve the heat dissipation efficiency.
  • Chip arrangement: Reasonably design the chip arrangement spacing to avoid heat accumulation caused by too dense chips.

4. Optical design

  • Color temperature and color rendering index: Select the appropriate color temperature and color rendering index according to the application scenario.
  • Mixed light design: For COB LED boards with multiple primary colors, it is necessary to reasonably design the arrangement and driving mode of LED chips of different colors to achieve a good mixed light effect.

5. Circuit design

  • Drive circuit: Design a suitable drive circuit to ensure the stable operation and good electrical performance of the LED chip.
  • Intelligent control: For application scenarios that require intelligent control, an intelligent dimming system can be integrated to adjust the lighting brightness according to actual usage.

How to make COB led boards?

The production of COB led boards can be summarized into the following steps:

1. Prepare the substrate

Select the appropriate substrate material and clean it to ensure the smooth progress of the subsequent process.

2. Glue dispensing and mounting

Apply an appropriate amount of conductive glue on the LED chip placement point on the substrate to achieve electrical connection between the chip and the substrate.

What are COB led boards? COB LED Strip

Place the LED chip accurately on the glue dispensing position. You can use a vacuum suction pen or tweezers to operate it, and then put the substrate with the chip attached into a thermal cycle oven and keep it at a constant temperature for a period of time. Take it out after the conductive glue is cured.

3. Wire welding

Use an aluminum wire welding machine to electrically connect the LED chip to the electrode on the substrate to form an inner lead welding to ensure a good electrical connection between the chip and the substrate.

4. Glue dispensing and curing

Prepare fluorescent glue according to the required color temperature, and then use an automatic glue dispensing machine to cover the fluorescent glue on the chip resistor and LED chip on the substrate.

Put the substrate with fluorescent glue applied in the oven for baking to completely cure the fluorescent glue to achieve the required color temperature and light effect.

5. Detection and packaging

Inspect the soldered substrate, repair or replace the LED chips that do not emit light, and repair or replace the chip resistors that do not work properly to ensure the performance and quality of the led boards.

Apply a layer of organic glue or resin on the LED chips and leads to protect the chips and solder joints and prevent them from being damaged by the external environment.

How do COB led boards work?

The working principle of COB led boards is mainly based on its packaging structure and electrical connection method:

  • Electrical connection: COB led boards are composed of multiple LED chips, which are directly adhered to the substrate through conductive glue. The substrate is usually made of metal or ceramic with good electrical and thermal conductivity.
  • Light-emitting process: When the power supply is connected to the COB led boards, the current flows through each LED chip through the circuit on the substrate, making the chip emit light. The light emitted by each chip is reflected and scattered by the packaging material to form a uniform light field.
  • Heat dissipation mechanism: A significant advantage of COB led boards is its excellent heat dissipation performance. Since the LED chip is directly attached to the substrate, the heat can be quickly conducted to the external environment through the substrate, which effectively reduces the temperature of the chip and prolongs its service life.

What is the lifespan of a COB led?

The lifespan of a COB led board is usually between 50,000 and 100,000 hours. This lifespan range means that under normal working conditions, COB led boards can last for many years. The long lifespan of COB led boards is mainly due to its good heat dissipation performance and compact packaging structure.

What are COB led boards? COB LED Strip

What are the advantages of COB led boards?

COB led boards have the following advantages:

1. Optical performance

  • High brightness and uniformity: COB led boards can provide higher brightness output by integrating multiple LED chips. Its light emission is uniform and soft, without ghosting and light spots, and can achieve a more uniform light field.
  • Wide viewing angle: COB packaging adopts shallow well spherical light emission, which has a better optical diffuse color effect.
  • High color rendering: COB light source has a high color rendering index and good color rendering, which can provide more natural and accurate light.

2. Heat dissipation performance

  • Excellent heat dissipation capacity: Multiple LED chips of COB led boards share a heat dissipation substrate, which quickly conducts heat to the external environment through the substrate, thereby effectively reducing the chip temperature and extending the service life.

3. Cost-effectiveness

  • Low cost: Compared with traditional SMD packaging, COB light source modules can save device packaging costs in lighting applications.
  • High manufacturing efficiency: The COB packaging process is simplified, eliminating the process of patch and reflow soldering, and the production efficiency is higher.

4. Structure and application

  • Light and thin: COB led boards have a simple structure and can use PCB boards of different thicknesses according to customer needs, reducing the weight to about 1/3 of traditional products, which is convenient for transportation and installation.
  • Anti-collision and pressure resistance: COB packaging encapsulates the LED chip in the concave lamp position of the PCB board, and then encapsulates and cures it with epoxy resin glue. The surface of the lamp point is convex into a spherical surface, which is smooth and hard, resistant to collision and wear.
  • Bendable: COB packaging has the ability to bend, and the bending of the PCB will not damage the packaged LED chip, so various special-shaped screens can be easily made.
  • Easy to maintain: COB light source has a simple structure and is easy to maintain. You only need to clean the optical lens to maintain brightness.

What are the disadvantages of COB led boards?

Although COB led boards have many advantages, they also have some disadvantages:

  • Heat dissipation problem: Due to the dense arrangement of chips, the heat dissipation area is limited, which easily leads to heat accumulation, affecting the light efficiency and life.
  • Relatively low light efficiency: Part of the light is absorbed after reflection between chips, resulting in a light efficiency that is about 10% lower than that of SMD packaging.
What are COB led boards? COB LED Strip
  • Difficult to repair: The chip and substrate are packaged as one, and a single chip needs to be replaced if it is damaged, and the repair cost is high.
  • High initial cost: High requirements for materials and processes, resulting in relatively high initial costs and prices.
  • Limited color selection: Mainly monochrome, the color selection is not as rich as SMD LED.

In summary, as an innovative chip-on-board packaging technology, COB led boards, with its unique principle, have shown significant advantages in light uniformity, heat dissipation, reliability and other aspects, and are widely used in indoor and outdoor lighting and display fields. BEST Technology has advanced COB packaging technology, efficient heat dissipation design, strict quality management system and flexible customization services. Please feel free to communicate with us at sales@bestpcbs.com for the production of COB led boards.

You may also like

How to copy PCB board? PCB reverse engineering
Wednesday, January 8th, 2025

How to copy PCB board? PCB reverse engineering. First, get the PCB sample to be copied, then disassemble and record the component information on the sample to make a BOM table; then scan the sample to get its PCB layout image; then trace the routing and place the components according to the image to complete the drawing of the PCB diagram; finally, use the drawn PCB diagram to make a new PCB board, solder the corresponding components, and test and debug to ensure normal function.

How to copy PCB board? PCB reverse engineering

What is copy PCB?

PCB copying, also known as circuit board cloning, refers to the reverse analysis of the circuit board through reverse research and development technology on the premise of existing electronic products and circuit boards, restoring the original product’s PCB files, bill of materials (BOM), schematic files and other technical files, and using these technical files to make PCB boards, solder components, test and debug, and finally complete the complete copy of the original circuit board sample.

How to copy PCB?

The process of copying PCB can be divided into the following points:

1. Get the PCB board to be copied and scan and back it up, remove the components and record the information to make a BOM table, and clean the residue on the surface of the PCB board.

2. Scan the cleaned PCB board, import it into the copy board software, draw the routing and place the components according to the image, and export the PCB file.

3. Make the PCB file into a PCB board, test and debug after soldering the components, and ensure that the copied PCB board functions normally.

What are the steps to copy PCB?

The process of copying PCB can be divided into the following steps:

1. Preparation

  • Get the PCB board: First, you need a PCB board, which can be provided by the customer or available on the market.
  • Scan and back up: Scan and back up the PCB board for reference during the copying process.

2. Remove components

  • Remove components: Use tools such as hot air guns to remove components on the PCB board, pay attention to temperature control, and avoid damaging components or PCB.
  • Make a BOM table: Record the model, parameters, location and other information of the removed components, and make a bill of materials.

3. Clean the PCB board

  • Remove residues: Clean the tin slag and other residues on the surface of the PCB board after the components are removed.

4. Copy board

  • Scan the PCB board: Scan the cleaned PCB board again to obtain a clear image.
  • Import the copy board software: Import the scanned image into the copy board software.
  • Draw the routing and place components: In the copy board software, draw the routing of the PCB according to the scanned image and place the corresponding components.
  • Export PCB file: Export the drawn PCB design to PCB file format.
How to copy PCB board? PCB reverse engineering

5. Make and test

  • Make PCB board: Make the exported PCB file into a PCB board.
  • Weld components: Weld the purchased components to the made PCB board.
  • Test and debug: Test and debug the welded PCB board to ensure its normal function.

Notes:

  • Legal compliance: When copying PCB, you need to pay attention to relevant laws and regulations to avoid infringement of intellectual property rights.
  • Precision control: During the scanning, drawing and production process, the precision must be strictly controlled to ensure that the copied PCB board is consistent with the original board

Does copy PCB comply with regulations?

Whether the copy PCB complies with regulations depends mainly on the purpose of the copy and whether the relevant intellectual property laws are complied with.

  • Intellectual property respect: The intellectual property rights of the original design must be respected when copying the PCB.
  • Legality of reverse engineering: In some cases, copying PCBs through reverse engineering is allowed, but the premise is that such behavior must be used for legitimate purposes.

In summary, whether the copying of PCBs is legal depends mainly on the purpose of the copying and whether the corresponding intellectual property license has been obtained. If it is for commercial purposes and without permission, it may violate relevant laws and regulations and face legal risks.

What are the benefits of copying PCB?

The benefits of copying PCBs mainly include the following aspects:

  • Save time and cost: By copying PCBs, companies can avoid the high cost and time cost of designing from scratch. Especially in urgent and complex projects, it can significantly save time and manpower.
  • ‌ Improve R&D efficiency: Copying PCBs can accelerate the product R&D process, shorten the product R&D cycle, and enable products to be brought to market faster.
How to copy PCB board? PCB reverse engineering
  • Optimize performance and function: Copying PCB is not just a simple copy. Through the analysis and research of technical data, product performance and function can be optimized, thereby enhancing the market competitiveness of products.
  • Avoid intellectual property issues: By copying PCB, enterprises can avoid infringing on the intellectual property rights of others under the premise of legality.

What should I pay attention to when copying PCB?

The following points should be noted when copying PCB:

  • Back up the original file: Before starting to copy, be sure to back up the original PCB file and GERBER file.
  • Strict file operation: During the copying process, the PCB board must be remade strictly in accordance with the content in the GERBER file, and it cannot be modified at will.
  • Check the file content: After exporting the GERBER file, you need to carefully check the file content to ensure the accuracy of the copy board content.
  • ‌Processing inner layer circuits: When processing the inner layer circuits, since there are only copper foil and inner circuits, the actual circuits cannot be seen, and the inner layer circuits need to be checked through the outer layer circuits.
  • Copper plating: When plating copper, the copper foil and the inner circuit connection need to be disconnected to avoid connection with the outer circuit.
  • Proofread with CAM software: After the design is completed, use CAM software for proofreading to ensure the accuracy of the copy board content.
  • Record component information: Before copying, record the model, parameters and position of all components in detail, especially the direction of diodes and transistors and the direction of IC gaps.
  • Disassemble and clean the PCB board: Remove all components, clean the PCB board, clean it with alcohol, dry it, and put it in the scanner.
  • Image processing: Adjust the contrast and brightness to make the parts with and without copper film have a strong contrast. Remove noise, scratches, etc.
  • Generate PCB file: Convert the processed image to PROTEL format file, import it in PROTEL and compare whether the PAD and VIA positions are accurately overlapped.
  • Merge and verify: Import TOP.PCB and BOT.PCB in PROTEL and merge them into a complete PCB diagram. Use a laser printer to print the TOP layer and BOTTOM layer on a transparent film at a 1:1 ratio, and compare it with the original PCB to ensure that there is no error.

How does BEST Technology copy PCB?

As a professional PCB manufacturer, BEST Technology has the following process for copying PCB:

1. Submit sample photos

  • Customer operation: Please take clear photos of the PCB samples, including the component layout and routing details on both sides, and then send the photos to our email: sales@bestpcbs.com
  • Notes: Make sure the photos are clear enough to clearly show the component model, location and routing on the PCB board so that our engineers can conduct preliminary analysis and evaluation.
How to copy PCB board? PCB reverse engineering

2. Preliminary quotation and communication

  • Engineer evaluation: After receiving the sample photos, our engineers will give a rough copy price based on factors such as the complexity of the PCB in the photos, the number and type of components, etc.
  • Program and IC information: If the PCB contains a program IC, you need to inform us or provide a clear photo of the IC so that we can evaluate the difficulty and cost of program cracking and give a more accurate quotation.

3. Confirm the price and send samples

  • Price confirmation: After receiving our preliminary quotation, if you have any questions or need to adjust, you can communicate with us further until both parties reach an agreement on the price.
  • Sample delivery: After the price is determined, you need to send us PCB samples, preferably 2 samples, so that we can conduct more detailed analysis and cloning. After receiving the samples, we will provide you with an accurate quotation based on the actual sample situation.

4. Payment and production start

  • Payment process: After you confirm that the final quotation is correct, you will complete the payment according to our payment method.
  • Production start: After receiving the customer’s payment, we will officially start the PCB cloning work, including sample analysis, component disassembly, PCB drawing and other steps.

5. Provide design files and manufacture circuit boards

  • Design file delivery: After completing the copy board work, we will send you the complete Gerber file, schematic diagram and BOM (Bill of Materials) for your review and confirmation.
  • Circuit board manufacturing: After confirming that the design files are correct, we will start to manufacture circuit boards for you based on these files to ensure that the quality and performance of the circuit boards meet your requirements.

In summary, every step of the PCB copy process is meticulous to ensure that the copy board accurately restores the original board function. At the same time, it is very necessary to find a qualified PCB manufacturer. BEST Technology has rich experience in PCB manufacturing. If you have PCB copy needs, please feel free to contact us at sales@bestpcbs.com.

You may also like

Let you know about PCBs of different colors: Black PCB vs green PCB
Monday, January 6th, 2025

The color of PCB not only affects its appearance, but is also closely related to material properties and application scenarios. Black PCB uses a special black solder mask layer, which gives it a unique appearance and is also suitable for high-power and high-performance electronic devices. Green PCB is widely used in consumer electronics and industrial control equipment due to its high contrast and good recognition, which is convenient for identification during production and inspection.

Let you know about PCBs of different colors: Black PCB vs green PCB

What is Black FR4 PCB?

The black FR4 PCB is a printed circuit board with FR4 material as the substrate and black solder mask ink coated on the surface. The following is a detailed introduction about it:

1. FR4 material properties:

  • Composition and structure: FR4 is a plate-shaped laminated product made of special electronic cloth impregnated with epoxy phenolic resin and other materials, and hot-pressed at high temperature and high pressure. It uses glass fiber cloth as a reinforcing material and epoxy resin as an adhesive to form a composite material.
  • Performance characteristics: It has high mechanical properties and can withstand certain external impact and pressure, ensuring that the circuit board is not easily damaged during use and assembly; it has good dielectric properties and is an excellent electrical insulator, which can effectively isolate different parts of the circuit, prevent short circuits and leakage, and ensure the stability of signal transmission.

2. The role of black solder mask:

  • Insulation protection: Like other colors of solder mask, black solder mask can cover the non-conductive area of ​​the circuit board to prevent short circuits between different lines, protect the circuit from external factors, improve the electrical insulation performance of the circuit board, and extend its service life.
  • Appearance and logo: Black gives the circuit board a high-end, mysterious and professional visual experience, making the product more attractive in appearance. It is often used in some electronic products that have special requirements for appearance or pursue a unique brand image.
  • Soldering and anti-corrosion: During the welding process, the solder mask can open windows at the designated welding position so that the solder flows only where it is needed, improve the welding quality, and reduce the occurrence of welding defects such as cold soldering and short circuits. At the same time, it can also protect the copper foil circuit from moisture, oxygen and other corrosive substances in the environment, prevent copper foil oxidation and corrosion, thereby ensuring the conductivity and reliability of the circuit board.
Let you know about PCBs of different colors: Black PCB vs green PCB

3. Application areas:

  • High-end consumer electronic products: such as high-end smartphones, tablets, laptops, etc., black FR4 PCB can enhance the overall texture and grade of the product, matching the stylish appearance design of the product.
  • Automation equipment: With its good mechanical and electrical properties, black FR4 PCB can adapt to factors such as vibration, shock, and temperature changes in industrial environments, and is widely used in industrial controllers, automated production line equipment, robots and other equipment.
  • Communication equipment: Black FR4 PCB can meet the requirements of communication equipment for electrical performance and heat dissipation performance, and its appearance can also be consistent with the professional image of communication equipment.
  • Medical equipment: Black FR4 PCB has good insulation and mechanical properties, which can ensure the stable operation of medical equipment during long-term use. It is often used in medical monitoring equipment, diagnostic equipment, treatment equipment and other fields.

What is Green PCB?

Green PCB refers to a printed circuit board with a layer of green solder mask ink coated on its surface. The main function of this layer of green ink is to prevent the physical disconnection of the conductor circuit, prevent short circuits caused by bridging during welding, and ensure that welding is only performed on the parts that must be welded to avoid solder waste.

Advantages of green PCB

  • Visual effect and recognition: Green has better visual effect than other colors in the yellow light room, making the logo and tracking lines on the circuit board more clearly visible. In addition, in the surface mount technology (SMT) welding process, the green background helps optical positioning calibration and improves production efficiency and quality.
  • Environmental protection and cost: Green ink is relatively environmentally friendly, and due to the large amount of green ink in the market, the cost is relatively low. For a long time, the widespread use of green ink in PCB manufacturing has also made its procurement cost low.
  • Convenience of observation and maintenance for workers: Under strong light, green is less irritating to the eyes, allowing workers to maintain clear vision for longer and reduce eye fatigue. In addition, the green background makes the wiring clearer and reduces the difficulty of maintenance.

Black PCB vs green PCB: Which one is better?

Black PCB board and green PCB each have their own advantages and disadvantages, and choosing which one is better depends on the specific application requirements.

Advantages and Disadvantages of Black PCB

Advantages:

  • High-end and technological sense: Black PCB usually gives people a high-end and technological impression, suitable for high-end electronic products such as high-frequency circuits and high-speed signal transmission circuits, and can provide better signal isolation and electromagnetic interference (EMI) control.
  • High light shielding: Black PCB has high light shielding, and the appearance looks more high-end and atmospheric, suitable for application scenarios that require high aesthetics.

Disadvantages:

  • Complex production process: The production process of black PCB is relatively complex, and it is easy to cause process problems due to insufficient light, such as unclear circuit graphics development, decreased alignment accuracy, etc., which increases the scrap rate and leads to higher costs.
  • Heat absorption: Black PCB absorbs more heat, which may increase the risk of overheating of sensitive components.

Advantages and Disadvantages of Green PCB

Advantages:

  • Widely used and mature process: Green PCB is the most common color, the production process is relatively mature and stable, the curing time is short and the performance is stable, and there are rarely problems such as solder mask bridge shedding.
  • High visibility and contrast: Green PCB contrasts sharply with white text, enhances readability, and is suitable for application scenarios that require high visibility.
  • Environmental protection: The ink used in green PCB is relatively environmentally friendly and does not contain conductive components, which reduces the risk of short circuits and the risk of toxic gas release.

Disadvantages:

  • Traditional appearance: Green PCB gives people a traditional and reliable feeling, which may not be suitable for all high-end or modern design needs.

Application scenario comparison

  • Black PCB: Suitable for high-frequency circuits, high-speed signal transmission circuits, high-end computers and other semiconductor applications because of its good signal isolation and EMI control capabilities.
  • Green PCB: Green PCB is widely used in consumer electronics and industrial control equipment due to its good visibility and recognition.

What is White PCB?

White PCB is a circuit board with a white solder mask on the surface, which is usually used in high-end electronic devices and precision instruments.

1. Definition and characteristics

  • Color: The color of white PCB is limited to white, which makes it more convenient to check the existing circuit.
  • Price: Compared with conventional green PCB, the production cost of white PCB is higher because more processes and special materials are required.
  • Manufacturing difficulty: The manufacturing of white PCB is more complicated than other types of PCB.
Let you know about PCBs of different colors: Black PCB vs green PCB

2. Advantages and disadvantages

Advantages:

  • Beautiful and elegant: The white appearance is more concise and fashionable, suitable for high-end products such as high-end headphones, watches, etc.
  • Easy to identify: During assembly and repair, white PCBs are easier to identify solder joints and components, especially in darker environments.
  • Good thermal conductivity: White PCBs have good thermal conductivity, which helps to dissipate heat and improve product stability and life.

Disadvantages:

  • High production cost: More processes and materials are required during the manufacturing process, resulting in increased costs.
  • Difficult welding test: The surface color is brighter and the light reflectivity is strong, making the welding test process more difficult.
  • Not suitable for high-frequency circuits: Due to the high dielectric constant of white PCBs, they are not suitable for high-frequency circuit design.

What is Yellow PCB?

Yellow PCB refers to a printed circuit board (PCB) with a yellow solder mask (covering layer) coated on the surface. Yellow PCB is not common in PCB manufacturing, mainly because it has a poor contrast with the traces and screen printing, which easily hides the traces and affects readability and visibility.

Characteristics and uses of yellow PCB

  • Poor contrast: Yellow PCB has poor contrast with traces and screen printing, which makes it less visually clear than PCBs of other colors.
Let you know about PCBs of different colors: Black PCB vs green PCB
  • Antistatic layer: Yellow solder resist is often used for antistatic layer, which can effectively prevent static electricity from interfering with the circuit and improve the reliability and stability of the circuit board. In addition, yellow solder resist can maintain its original color after metallization and is often used in radio equipment.

How should the PCB color be selected?

Selecting the right PCB color requires consideration of multiple factors, including the effect of color on readability and aesthetics, the feasibility of the production process, and the needs of the application scenario.

PCBs of different colors and their advantages and disadvantages

  • Green PCB: Green is the most common PCB color and is widely used for its good contrast and readability. The surface treatment of green PCB reflects less light, which helps reduce glare and is suitable for most application scenarios.
  • Red PCB: Red PCB has high visibility and is suitable for high-end electronic devices and parts that need to be highlighted. The red solder resist is easy to control during production, with fewer problems of bubbles and thickness, and is suitable for use in high temperature and harsh environments.
  • Blue PCB: Blue PCB provides good appearance and recognition and is suitable for electronic products that require a high-tech feel. However, the blue solder mask has high fluidity and is prone to oil accumulation, so special attention should be paid during production.
  • Black PCB: Black PCB has high light shielding and aesthetics, but it absorbs heat and increases the risk of component overheating. Black PCB should not be used in high-temperature applications.
  • White PCB: White PCB is easy to identify in low-light environments and is suitable for applications that require high reflectivity, such as lamps and optical equipment.
  • Yellow PCB: Yellow PCB was once widely used, but has poor contrast with routing and screen printing and is now less used.

Recommendations for choosing PCB colors

  • Choose according to application scenarios: If high contrast and readability are required, green or blue PCBs are better choices; if high visibility and high temperature environments are required, red PCBs are more suitable.
  • Consider the production process: Different colors of solder mask have different requirements for the production process, and production efficiency and cost-effectiveness should be considered when choosing.
  • Aesthetics and design style: Choose the right color according to the overall design style of the product, such as red for activeness and enthusiasm, and blue for calmness and technology.

PCBs of different colors each have their own unique advantages and application scenarios. Green PCB is widely used in consumer electronics and industrial control equipment due to its good visibility and recognition. Black PCB is often used in high-performance electronic devices due to its high-end appearance and excellent heat dissipation performance.

As a professional PCB manufacturer, BEST Technology can provide PCBs in a variety of colors to meet the needs of different customers. Whether it is the pursuit of aesthetics or specific functions, we can provide you with high-quality solutions. Please feel free to contact us at sales@bestpcbs.com to get the best PCB color solution.

You may also like

What is the best color for PCB? PCB solder mask colors
Friday, January 3rd, 2025

What is the best color for PCB? Generally speaking, green is the best choice for PCB. On the one hand, green solder mask ink is cheap, in sufficient supply, mature in production process, with low scrap rate and obvious cost advantage; on the other hand, it has a sharp contrast with white silk-screen text, which is convenient for seeing circuits and components during assembly and maintenance, and is also environmentally friendly.

What is the standard color of PCB?

In the PCB industry, green is generally regarded as the standard color. This is mainly because:

  • The process is mature and the cost is low: The green solder mask process is the most mature and simple, and the use of green solder mask ink is cost-effective. Most manufacturers use the same green ink, which can reduce the cost of line change and is more economical in large-scale production.
What is the best color for PCB? PCB solder mask colors
  • Good visibility and recognition: The green and white printed text form a sharp contrast, which is convenient for assemblers to scan the circuit board, less stress on the eyes, and good visual contrast when checking welding quality and circuit layout. The visual effect is good in the yellow light room, and the instrument recognition effect for optical positioning and calibration is also better.
  • Relatively safe and environmentally friendly: Compared with other colors such as blue and black, green solder resist does not contain elements such as cobalt and carbon, has a low risk of short circuit when powered on, and generally does not release toxic gases in high temperature environments.

Which PCB color is best?

The choice of PCB color depends on the specific application requirements and environmental conditions. PCBs of different colors have their own characteristics and applicable scenarios:

  • Green PCB: It is the most common color. It is low-cost and has obvious advantages in large-scale production; it is easy to develop and it is easier to remove unnecessary parts during the production process; it has good visual effects and is eye-friendly, which helps the visual contrast of high-brightness metal pads and logos, and is conducive to optical positioning calibration; it also has a certain degree of confidentiality and is relatively safe and environmentally friendly.
  • Black PCB: It gives people a high-end and mysterious feeling and is often used in high-end audio equipment, gaming hardware, etc. The contrast of the words marking the welding parts is high, and the colored connectors are more conspicuous against a black background, and the visual effect is good when placed in the chassis. However, the production process of black PCB has high process requirements, which is easy to cause color difference, resulting in an increase in defective rate, and the circuit routing is difficult to identify, which will increase the difficulty of maintenance and debugging in the R&D and after-sales stages.
  • Blue PCB: It can provide novel and high-end visual effects, suitable for electronic products that pursue product appearance differentiation, with good screen printing contrast, relatively simple production process and moderate cost.
What is the best color for PCB? PCB solder mask colors
  • Red PCB: It has excellent visibility, can clearly define the contrast of traces, planes and blank areas, and has beautiful screen printing effects. It usually uses high-temperature resistant red photosensitive dyes, has good thermal stability and weather resistance, and is often used in specific applications such as high-end communication equipment and military electronics, but the production process is complex and the cost is high.
  • White PCB: The appearance is clean and beautiful, suitable for products with high decorativeness, such as high-end headphones, watches, etc. However, it is easy to hide the routing, the production cost is relatively high, and the welding test is relatively difficult.

Does PCB color matter?

PCB color is important to a certain extent.

From the perspective of manufacturing, color is related to production process. The production process of green PCB is the most mature and the cost is relatively low. Because green solder mask ink is more commonly used, manufacturers can use equipment and materials more efficiently and reduce production costs during large-scale production.

Black PCBs have higher process requirements during the manufacturing process. For example, in the exposure and development stages, black solder mask may require more precise parameter control due to its strong light shielding, otherwise it is easy to have quality problems, such as short circuit hazards or appearance defects.

Color also has an impact on the product assembly and maintenance stage. For assembly workers, the high contrast between green PCB and white silk-screen text makes it easier for them to identify component locations and view line directions, which helps improve assembly efficiency and reduce the probability of errors. Black PCBs have disadvantages in this regard. Its lines are not easy to see clearly, which is more troublesome during debugging and maintenance.

From the perspective of product performance, color may have a certain impact on heat dissipation and electromagnetic compatibility (EMC). In theory, black PCBs may have better performance in thermal radiation due to their darker color, which can help some high-power devices dissipate heat better.

In terms of electromagnetic shielding, if special additives are used to change the color of PCBs of different colors, these materials may affect the electromagnetic shielding performance. However, this situation is more complicated and related to the specific material formula.

In terms of product appearance design, color is very important. For consumer electronic products, such as mobile phones and computers, the color of the PCB can match the overall style and brand image of the product. For example, some high-end electronic products use black PCBs to create a cool and professional feeling, while some products with a fresh style may use white or light blue PCBs.

Are black PCBs more expensive?

Usually, black PCBs are more expensive for the following reasons:

  • Material cost: Black solder mask materials may require more expensive pigments or additives, and character inks may also be more expensive due to color and quality factors.
  • Production process: Black pigments absorb light strongly. In the exposure and development processes, it is easy to have process problems such as unclear circuit graphics due to insufficient light and reduced alignment accuracy between the solder mask and the circuit, which increases the scrap rate and leads to an increase in overall costs.
  • Market demand and supply: Black PCB is generally used in high-end electronic products, and the market demand is relatively small. Suppliers cannot form economies of scale during production, which leads to an increase in unit price.

Why is green PCB cheaper?

Green PCB is cheaper for the following reasons:

1. Low material cost:

  • Cheap raw materials: The raw materials of green solder mask ink are in sufficient supply in the market and are relatively cheap. For example, compared with the expensive pigments or additives used in some special color inks, the cost of green ink ingredients is lower.
  • Adequate stock: Due to the widespread use of green PCBs, ink suppliers usually reserve a large amount of green ink, which further reduces procurement costs and reduces the risk of price fluctuations caused by shortages.
What is the best color for PCB? PCB solder mask colors

2. Mature production technology:

  • Easy to process: The processing and printing of green solder mask ink is relatively easy, and no complex color adjustment and special treatment are required during the production process, which can improve production efficiency and reduce labor and time costs.
  • Low scrap rate: The process of producing green PCB is very mature. In the exposure, development and other processes, the probability of quality problems of green PCB is low, and the scrap rate is low, which reduces the overall production cost.

3. Favorable market supply and demand relationship:

  • Massive production: Green is the most common color of PCB, and the market demand is large, so manufacturers can carry out large-scale production. Through large-scale production, enterprises can make full use of production equipment and reduce the production cost of unit products.
  • Strong versatility: Most electronic products have no special requirements for PCB color. Green PCB can meet the needs of most application scenarios. There is no need to adjust the production line or increase additional costs to meet the special color requirements of individual customers.

What color is FR4?

FR4 is a substrate material for PCB. It does not have a fixed color. Its main components are glass fiber cloth and epoxy resin. Its color is usually determined by the solder mask on the surface.

The most common color of FR4 circuit boards is green, because green solder mask is widely used in PCB manufacturing. But in fact, FR4 substrate can present a variety of colors after different surface treatments, such as black, blue, red, white, etc.

How to choose the color of PCB?

There are several main factors to consider when choosing the color of PCB:

1. Functional requirements:

  • Green PCB: Green PCB is widely used because of its high clarity and low glare characteristics. The green solder mask contrasts sharply with the white text, improving readability while reducing glare and protecting the eyes.
  • Black PCB: Black PCB provides high light shielding and aesthetics, and looks high-end and atmospheric, but it absorbs more heat and may increase the risk of overheating of sensitive components.
  • Blue PCB: Blue PCB has good screen printing contrast and is suitable for applications that require high contrast, such as LCD installation.
What is the best color for PCB? PCB solder mask colors
  • Red PCB: Red PCB is eye-catching and has high visibility, suitable for high-end electronic devices and occasions that require high-precision circuit boards.
  • White PCB: White PCB appears clean and tidy in various environments, has high reflectivity, and is suitable for low-light environments or applications that require high contrast.

2. Application scenarios and environmental factors:

  • Consumer electronics: Green PCB is widely used in consumer electronics due to its low cost and high contrast.
  • High-end electronic equipment: Red and blue PCB are often used in high-end communication equipment, military electronic products and optical equipment due to their high visibility and contrast.
  • Lighting industry: White PCB is often used in the lighting industry due to its high reflectivity.

3. Production process and cost-effectiveness:

  • Production process: PCBs of different colors have different requirements for production process.
  • Cost-effectiveness: Green PCB is the most widely used, and factories usually reserve a large amount of green paint, which is relatively low in cost. In addition, green is more friendly to the eyes and reduces fatigue caused by long-term work.

In short, the selection of PCB color should be considered comprehensively. If you pursue cost-effectiveness and mass production, choose green, which has low cost and mature technology; if you want to highlight the quality of high-end products, you can choose black, which has high cost but good appearance and texture; blue, red, etc. are determined according to specific scenarios, such as red for high visibility and blue for novel appearance. Comprehensive consideration can be made to choose the right one.

You may also like

How to clean a pcb? How to clean circuit board corrosion?
Thursday, January 2nd, 2025

How to clean a pcb?First, prepare a soft brush, high-concentration isopropyl alcohol or special cleaning agent, and tweezers, and take power-off and anti-static measures. Then use a soft brush dipped in cleaning agent to brush, soak the stains in the cleaning agent first and then brush, use a cotton swab to clean the gaps and blow them clean again. After cleaning, use a low-temperature hot air blower to blow dry from a distance, and finally check whether the appearance is damaged and perform functional tests.

How do you clean up PCBs?

PCB is a key component of electronic equipment. Cleaning PCB helps ensure its normal operation and extend its service life. Here are some common cleaning methods and precautions:

How to clean a pcb? How to clean circuit board corrosion?

1. Eraser cleaning method:

  • Tools: Choose a soft eraser.
  • Operation: Gently press the eraser on the part that needs to be cleaned, such as the gold finger, and wipe back and forth along its arrangement direction until the surface is restored to brightness. This method is simple and effective, and will not damage the gold-plated layer on the surface of the gold finger.

2. Alcohol wiping method:

  • Tools: medical alcohol (or anhydrous ethanol), soft cloth or cotton wool.
  • Operation: Pour an appropriate amount of alcohol on a soft cloth or cotton wool, and then gently wipe the surface of the PCB to ensure that the alcohol is evenly covered. After wiping, wait for the alcohol to evaporate naturally.

3. Special detergent method:

  • Tools: Goldfinger special detergent, board washing water, hydrogen peroxide, etc., as well as cleaning cloth, cotton swabs or soft brushes.
  • Operation: Dilute the detergent to an appropriate concentration according to the instructions for use, then dip the detergent with a soft cloth, cotton swab or soft brush, and gently wipe the surface of the PCB. After wiping, rinse thoroughly with clean water, then wipe dry with a clean cloth or dry naturally.

4. Ultrasonic cleaning method:

  • Equipment: Ultrasonic cleaning machine.
  • Operation: First calculate and configure the dilution ratio of the cleaning solution, add water to the cleaning machine tank, and then add the cleaning solution. Preheat the solution to the appropriate temperature according to the detergent recommendation. Then put in the PCB and set the cleaning time, usually a few minutes. After cleaning, remove the PCB, rinse and dry thoroughly.

5. High-pressure spray cleaning and brushing:

  • Equipment: High-pressure spray cleaning machine or soft brush.
  • Operation: High-pressure spray cleaning is to spray the cleaning liquid onto the PCB surface at a high pressure through a high-pressure pump, and use the impact of the water flow to wash away the contaminants. Brushing is to use a soft brush to dip the cleaning liquid and manually or automatically brush the PCB surface.
How to clean a pcb? How to clean circuit board corrosion?

When cleaning the PCB, you should choose the appropriate cleaning method and tools according to the actual situation, and pay attention to the safety and effectiveness during the operation. At the same time, the cleanliness of the PCB should be carefully checked after cleaning to ensure that there are no residues and stains that affect the performance and stability of the circuit board.

Can you use WD-40 to clean a circuit board?

You can use WD-40 to clean the circuit board, but you need to be careful. WD-40 can effectively remove oil, dust, oxides and some minor corrosion on the circuit board, and can form a thin protective film on the surface of the circuit board to prevent the circuit board from getting wet.

In addition, WD-40 precision electrical cleaner is suitable for various electronic instrument circuit boards. It has the characteristics of fast cleaning and no residue. It is suitable for plastic, rubber and metal materials, safe and non-corrosive.

Advantages and disadvantages of using WD-40 to clean circuit boards

Advantages:

  • Good cleaning effect: WD-40 can effectively remove various dirt on circuit boards, especially dirt in narrow gaps and between components.
  • Moisture-proof effect: Form a protective film on the surface of the circuit board to prevent moisture, suitable for circuit boards in humid environments or long-term storage.
  • Quick drying and no residue: WD-40 precision electrical cleaner evaporates quickly without leaving any residue.

Disadvantages:

  • Need to dry thoroughly: After cleaning, you must ensure that the circuit board is completely dry, otherwise it may cause problems such as short circuits.
  • Avoid sensitive components: Avoid WD-40 directly spraying on sensitive components during cleaning, such as high-precision sensors, chip pins, etc.

What is the best solvent to clean PCB?

The best solvent for cleaning PCBs depends on the specific cleaning needs and environmental requirements.

Common solvents and their advantages and disadvantages

  • Organic solvents: such as acetone, ethanol or isopropyl alcohol. These solvents have strong dissolving power and can effectively remove dirt and grease on the surface of PCB. The advantages are simple operation, easy to obtain solvents, and suitable for most conventional cleaning needs.
  • Chlorinated solvents: For example, the washing water made by mixing chlorinated solvents with other solvents can dissolve rosin and remove flux quickly, and is easy to volatilize after cleaning, but it is often easy to turn white and sticky, and it is a flammable solvent. Environmental regulations are becoming increasingly stringent, and its use has been reduced.
  • Hydrocarbon solvents: composed of two elements, carbon and hydrogen, are mainly used to clean various oils, greases, and soldering resins. Hydrocarbon cleaning agents can be used in various ways, but they are flammable and explosive, so safety should be paid attention to when using them.
  • Water-based washing water: With water as the solute carrier, it is environmentally friendly, safe, non-toxic, and has no irritating gas volatilization. It is suitable for SMT steel mesh, fixtures, wave soldering equipment, etc., with good cleaning effect and environmental protection.

What is a good substitute for PCB cleaner?

Substitutes for PCB cleaners include alcohol, detergent, white vinegar and lemon juice. These alternatives perform well in cleaning electronic components and have less impact on the human body and the environment.

  • Alcohol: Alcohol is a relatively environmentally friendly cleaning agent that can effectively remove oil and dirt from the surface of PCBs and electronic components. Alcohol is not only affordable and easily available, but also evaporates quickly and does not leave water stains after use.
  • Dishwashing liquid: Dishwashing liquid does not contain any harmful substances and is harmless to the human body and the environment. It is also suitable for cleaning oil and dirt on the surface of PCB boards and electronic components, and is inexpensive.
  • White vinegar: White vinegar is an environmentally friendly and non-toxic natural cleaning agent that can effectively remove stains and sediments from the surface of electronic components. White vinegar is readily available in the home and is easy to use.
  • Lemon juice: Lemon juice contains acidic ingredients that can remove stains and sediments from the surface of electronic components. It is a natural cleaning agent that is non-toxic, environmentally friendly and has a natural aroma.

What breaks down PCBs?

When cleaning PCBs, the following situations may cause them to break down:

  • Chemical corrosion: Using a cleaning agent containing highly corrosive substances (such as concentrated acids, strong alkalis, and halogenated solvents) will react with the PCB substrate material and destroy its structure; the moisture or chemical components in the cleaning agent residue may also cause oxidation corrosion of the metal circuit, accelerating the aging and decomposition of the PCB.
How to clean a pcb? How to clean circuit board corrosion?
  • Physical damage: Brushes with hard bristles, sharp tools, or excessive force can scratch the circuit, damage the protective layer, or even cut the circuit, and may also cause components to loosen and fall off; high temperatures during drying can soften and deform the substrate material, affecting the quality of the solder joints and further damaging the PCB.
  • Electrostatic discharge: If anti-static measures are not taken during cleaning, static electricity will accumulate and then discharge, which may damage static-sensitive components, cause damage to the internal circuit structure, affect the PCB function, and even cause further damage such as short circuits.

Is 70% isopropyl alcohol safe for electronics?

70% isopropyl alcohol is generally safe for electronic products. It has good cleaning properties, can dissolve common stains such as oil, and has moderate volatility, which means it can evaporate quickly after cleaning. But there are risks. The 30% water it contains may harm components that are sensitive to humidity, causing short circuits, corrosion, or performance degradation.

Of course, as long as you operate carefully, avoid liquid from entering the components, and ensure complete drying, it is generally safe, but higher purity isopropyl alcohol or special cleaning agents may be required for precision or humidity-sensitive electronic products.

How to clean circuit board corrosion?

There are several ways to clean circuit board corrosion:

  • Use compressed air: Compressed air is a common tool for electronic cleaning. It can remove dust and impurities by releasing short pulses into the vents.
  • Use baking soda: Baking soda (sodium bicarbonate) is an alkaline substance that can effectively neutralize the acid in the corrosive solution and help remove corrosion on the surface of the PCB.
  • Use distilled water: Distilled water has high purity and can be used to clean circuit boards, but you need to be careful to avoid using ordinary tap water because the impurities in it may aggravate corrosion.
  • Use special cleaning agents: such as board washing water, alcohol, etc. These cleaning agents can effectively remove stains and flux residues on the circuit board.
How to clean a pcb? How to clean circuit board corrosion?
  • Ultrasonic cleaning technology: Use ultrasonic vibration to improve the cleaning effect, suitable for the cleaning needs of high-end precision products.
  • Dry ice cleaning method: This is an environmentally friendly cleaning technology that removes stains by spraying dry ice particles, suitable for precision products that are sensitive to shaking.

Methods to prevent circuit board corrosion include:

  • Keep it dry: Avoid circuit boards in a humid environment for a long time. Keeping the circuit board dry is the key to preventing corrosion.
  • Clean flux residues in time: Clean flux residues in time after welding to prevent them from reacting with PCBs and causing corrosion.

In short, cleaning PCBs is an indispensable part of electronic equipment maintenance. By choosing appropriate cleaning methods and tools, pollutants on the PCB surface can be effectively removed, and the stability and service life of the equipment can be improved. At the same time, precautions and effect inspections during the cleaning process are also very important.

You may also like

Why is copper used in PCBs?
Thursday, January 2nd, 2025

Why is copper used in PCBs? Because of its strong electrical conductivity, it can ensure efficient signal transmission; excellent thermal conductivity, can quickly dissipate heat; stable chemical properties, can resist corrosion to ensure reliable circuits; good processability, meet the needs of PCB miniaturization; and good cost-effectiveness and compatibility, it is an ideal choice for PCB manufacturing.

What material is commonly used for PCBs?

The materials commonly used for PCBs include FR-4, metal substrates, ceramic substrates, polymer materials, etc. These materials have their own characteristics and are suitable for different application scenarios.

Why is copper used in PCBs?
  • 1. FR-4

FR-4 is a glass fiber reinforced plastic and is the most commonly used substrate in the PCB manufacturing process. It has excellent electrical properties, mechanical properties, thermal properties and weather resistance, and is widely used in home appliances, office electronic equipment, automotive electronics, industrial controllers and other fields.

  • 2. Metal substrate

A metal substrate is a PCB board with a metal film plated on the substrate. Commonly used metals include aluminum, copper, iron, nickel, stainless steel, etc. It has excellent heat dissipation and shock resistance, and is suitable for high-power electronic equipment, LED lighting, automotive electronics and other fields. But metal substrates are expensive and have high manufacturing costs.

  • 3. Ceramic substrates

Ceramic substrates are very hard, high-temperature-resistant and corrosion-resistant materials, usually made of high-purity alumina or silicon nitride. They are suitable for high-frequency, high-power and high-precision electronic components, and are mainly used in high-end fields such as military industry, aerospace, and medical treatment.

  • 4. Polymer materials

Polymer materials include polyimide, acrylic, polyamide and epoxy resin, which have good mechanical properties, dimensional stability and thermal stability, and are suitable for high-density, high-speed and high-precision circuit boards. They are mainly used in semiconductor production equipment, optical instruments, aerospace, military industry and other fields.

What is the core material of a PCB?

The core material of a PCB is copper clad laminate (CCL). Copper clad laminate plays a vital role in PCB manufacturing. It not only provides the functions of conductivity, insulation and support, but also directly determines the performance of PCB.

The manufacturing process of copper clad laminate includes impregnating electronic fiberglass cloth or other reinforcing materials with resin, then covering one or both sides with copper foil, and undergoing hot pressing. This material not only has the functions of conducting, insulating and supporting, but also serves as the core substrate of PCB.

In addition, other core materials of PCB include copper foil, prepreg, dry film and ink, etc. These materials together determine the quality and performance of the final product.

What is the copper plate on PCB?

The copper clad laminate (CCL) on PCB is a composite material consisting of a non-conductive substrate (such as FR4) and one or more layers of copper foil. The copper foil is usually covered on one or both sides of the substrate for conductive connection.

Why is copper used in PCBs?

Copper clad laminate plays a vital role in PCB manufacturing. It is the core material for making PCBs and has four major functions: conducting, insulating, supporting and signal transmission.

Copper clad laminate not only carries the connection between electronic components, but also ensures the normal operation of electronic equipment, and in the production of multilayer boards, it also plays the role of core board.

The manufacturing process of copper clad laminate mainly includes impregnating the reinforcing material with a resin binder, then covering the copper foil on one or both sides, and finally hot pressing. It occupies an important position in PCB manufacturing, and direct materials account for about 60% of the total cost of PCB. It has a wide range of applications and is commonly found in electronic products such as computers, computers, and mobile communications.

Why is copper used in a PCB?

The main reasons for using copper in PCBs include the following:

  • Conductive properties: Copper is an excellent conductive material that can ensure that current flows smoothly on the PCB to meet the working requirements of electronic equipment.
  • Heat dissipation: The high thermal conductivity of copper can effectively disperse heat to a larger area, reduce local hot spots, and improve overall heat dissipation efficiency.
  • Mechanical stability: Copper plating helps maintain the uniformity of lamination during PCB manufacturing and reduce deformation caused by uneven materials, thereby improving the mechanical stability of the finished product.
  • Signal integrity: Copper plating can provide a low-impedance return path, reduce signal loss and interference, especially in high-frequency digital signal transmission, and improve the stability and reliability of signal transmission.
  • Electromagnetic shielding: Large areas of ground or power copper plating can serve as a natural electromagnetic shielding layer to reduce external interference, while suppressing noise propagation within the circuit to meet EMC requirements.
  • Reduce costs: Although the cost of copper is relatively high, its excellent electrical and thermal conductivity makes the circuit design more concise, reduces the number and complexity of components, and thus reduces the overall cost to a certain extent.

What is the purpose of copper traces on a PCB?

Copper traces on a PCB have a variety of uses, mainly including conduction, heat dissipation, mechanical support and signal transmission.

  • Conductivity: Copper traces are the most important conductive material in PCBs, used to connect various components in the circuit, such as integrated circuits, resistors, capacitors, etc., to ensure smooth transmission of current.
  • Heat dissipation: Copper has good thermal conductivity. By laying copper traces near the heat source, heat can be effectively dispersed, local overheating can be prevented, and the overall heat dissipation efficiency of the PCB can be improved.
Why is copper used in PCBs?
  • Mechanical support: Copper traces play a supporting role in the PCB manufacturing process, helping to maintain the uniformity of lamination and reduce deformation, thereby improving the structural stability of the PCB.
  • Signal transmission: In high-frequency circuits, copper traces provide a complete return path for high-frequency signals, reduce signal interference, and improve the stability and reliability of signal transmission.

How thick is 1 oz copper PCB?

The thickness of 1 oz copper PCB is about 1.4 mils, or 0.035 mm.

Key information is as follows:

  • Relationship between ounces and thickness: In PCB manufacturing, the thickness of copper is usually expressed in ounces. 1 ounce of copper means that the weight of copper is 1 ounce in an area of ​​1 square foot.
  • Unit conversion: After conversion, the thickness of 1 oz copper is about 1.4 mils, and 1 mil is equal to 0.001 inches, which is further converted to millimeters, that is, 0.035 mm.

What is the difference between 1 oz and 2 oz copper?

The main difference between 1 oz and 2 oz copper is their thickness and weight.

1. Thickness difference:

  • 1 oz copper: The thickness of 1 oz copper is about 0.0356 mm or 1.35 mils.
  • 2 oz copper: The thickness of 2 oz copper is about 0.0712 mm or 2.72 mils.

2. Weight difference:

  • 1 ounce copper: 1 ounce is approximately equal to 28.35 grams (g).
  • 2 ounces copper: 2 ounces is approximately equal to 56.7 grams (g), which is twice that of 1 ounce copper.
Why is copper used in PCBs?

3. Application scenarios:

  • 1 ounce copper: Usually used for general circuit board design, suitable for most electronic devices.
  • 2 ounces copper: Suitable for applications that require higher current carrying capacity or higher reliability, such as servers, industrial control equipment, etc.

4. Cost difference:

  • Increased thickness: Generally, increased copper thickness leads to higher costs because more materials and more complex manufacturing processes are required.

On the whole, the choice of copper in PCB is inevitable. With its excellent performance, it ensures stable signal transmission, anti-interference, efficient heat dissipation, circuit stability, high current carrying and enhanced PCB mechanical strength of electronic equipment, thereby ensuring reliable operation of the equipment.

You may also like

What is the soldering temperature of PCB? soldering temperature 60/40
Monday, December 30th, 2024

What is the soldering temperature of PCB?When using traditional tin-lead solder, the soldering temperature is roughly in the range of 183℃ – 327℃. For common tin-silver-copper alloys, the melting point is usually in the range of 217℃ – 227℃. During the soldering operation, the temperature is mostly controlled at around 250℃ – 300℃ to ensure that the solder is fully melted and a high-quality solder joint is formed.

What is the best temperature to solder at?

The optimal temperature range for PCB soldering varies depending on the soldering method.

soldering temperature
  • Surface mount technology: For surface mount technology (SMT), the soldering temperature is generally between 200-240 degrees Celsius. This soldering method includes hot air ovens and reflow soldering, which is mainly used in modern electronic equipment manufacturing.
  • Wave soldering: The soldering temperature of wave soldering is generally between 230-260 degrees Celsius. The preheating zone temperature of the wave soldering machine is usually 90-130℃, the solder temperature is 275℃~300℃, the immersion speed is 20mm/s~25mm/s, and the immersion time is 1s~3s.
  • Manual soldering: The temperature requirements for manual soldering are relatively high, usually set between 300℃ – 350℃. For precision components such as IC and SMD, it is recommended to control it at 260℃ – 300℃.
  • Reflow soldering: The preheating zone temperature of reflow soldering is heated from room temperature to 150℃ – 200℃, the wetting zone is maintained at 150℃ – 200℃, and the peak temperature of the reflow zone is 230℃ – 260℃. The entire reflow soldering process is usually controlled within 4-7 minutes.
  • Lead-free solder: For lead-free solder, due to its high melting point, the soldering temperature usually needs to be higher, generally between 250℃ – 280℃.

What temperature is 60 40 soldering?

The optimal soldering temperature range of 60/40 solder wire is 220℃-240℃. Within this temperature range, the fluidity and wettability of the solder wire are good, which can ensure the quality and effect of soldering components.

In addition, different types of solder wire have different optimal temperature ranges:

  • 63/37 alloy: high melting point, suitable for soldering circuits and PCB boards, the optimal temperature range is 260℃-280℃.
  • 55/45 alloy: melting point is 187℃-202℃, suitable for specific application scenarios.
  • 50/50 alloy: melting point is 190℃-216℃, suitable for soldering tasks requiring higher melting points.
  • 45/55 alloy: melting point is 192℃-227℃, suitable for soldering tasks requiring higher melting points.
  • 40/60 alloy: melting point is 194℃-238℃, suitable for specific high melting point soldering needs.
  • 35/65 alloy: melting point is 198℃-247℃, suitable for high melting point welding tasks.
  • 30/70 alloy: melting point is 202℃-256℃, suitable for extremely high melting point welding tasks.

What is too much heat on solder?

Overheating of PCB solder can lead to a variety of problems, including reduced soldering quality, component damage and safety hazards. Specifically:

  • Degraded soldering quality: Overheating can lead to increased solder fluidity, which may cause excessive solder joints or solder accumulation, affecting soldering quality. In addition, overheating may also cause solder joints to turn white, have no metallic luster, have a rough surface, easily peel off, and reduce strength.
soldering temperature
  • Component damage: High temperature accelerates the aging process of electronic components and shortens their life. Long-term overheating may cause damage, burning or failure of electronic components, requiring more frequent component replacement, and increasing repair and maintenance costs.
  • Safety hazards: Overheating may cause fire risks. In extreme cases, overheated PCB boards may cause wires, cables and other materials to melt, causing fires.

Do and don’ts of soldering?

The precautions for PCB soldering include the following aspects:

1. Selection of soldering materials and flux:

  • Soldering materials: Commonly used soldering materials include tin-lead solder, which is suitable for general electronic product assembly due to its low melting point, high mechanical strength, low surface tension, and good oxidation resistance.
  • Flux: Flux is divided into solder resist and soldering flux. The soldering flux is mainly used to remove oxide film, prevent oxidation, reduce surface tension, and increase solder fluidity. Commonly used soldering fluxes include rosin series, which are non-corrosive and suitable for electronic assembly soldering.

2. Key points of welding technology:

  • Surface treatment of weldment: Remove rust, oil, dust and other impurities on the welding surface.
  • Pre-soldering: Pre-moisten the welding parts of component leads or wires with solder to reduce welding errors.
  • Appropriate amount of flux: Rosin water should only wet the solder joints to be formed to avoid excessive use resulting in excessive solder joints or cold solder joints.
  • Keep the soldering tip clean: The soldering tip needs to be cleaned regularly to prevent oxidation from affecting the heating effect.

3. Control of welding temperature and time:

  • Temperature control: Too high or too low temperature of the soldering iron will affect the welding quality. It is recommended to use a white light adjustable soldering iron, the temperature is about 350°C for lead soldering, and the temperature is about 380°C for lead-free soldering.
  • Time control: Select the appropriate heat and time according to the size and shape of the solder joint to ensure the full melting of the solder and the activation of the active flux.

4. Soldering sequence and component placement:

  • Soldering sequence: Prioritize soldering of smaller components, such as resistors and capacitors, and finally solder larger components and connectors.
  • Component placement: Components should be neatly, centered, and placed on the board surface, and pay attention to the polarity of the components.

5. Ventilation and safety measures:

  • Ventilation: Harmful gases will be generated during welding, and exhaust fans or other ventilation equipment must be equipped.
  • Safe operation: Ensure the safety of the operating process, circuit boards and welding tools, and use anti-static tools and protective measures.

What temperature does solder reflow at?

The reflow temperature range of solder during reflow soldering is usually between 220-260℃. Specifically, the four key temperature zones of reflow soldering and their temperatures and times are as follows:

  • Preheating zone: The temperature is usually set at 150-200℃ for 60-120 seconds. The purpose of this stage is to preheat the circuit board and components to reduce thermal stress and avoid thermal shock.
  • Wetting zone: The temperature range is 180-230℃ for 30-90 seconds. At this stage, the solder paste begins to melt and penetrate into the solder joints, preparing for the next reflow stage.
soldering temperature
  • Reflow zone: The temperature is usually 220-260℃ for 30-60 seconds. At this stage, the solder paste is completely melted to form a stable solder joint. Too high a temperature or too long a time may cause the solder joint to overheat, while too low or too short a time may cause the solder joint to be loose.
  • Cooling zone: The temperature drops below 70℃ for 60-120 seconds. The rapid cooling process helps to reduce the thermal stress of the solder joints and improve the reliability and stability of the product.

In addition, the solder paste will go through four stages during the reflow process: solvent volatilization, oxide removal, melting and reflow, and cooling and solidification. The temperature and time settings of these stages are crucial to ensure the quality of welding and product reliability.

How to remove old solder?

There are mainly the following ways to remove old solder:

  • Use a solder sucker: The solder sucker is a commonly used tool, especially suitable for soldering work on precision circuits. When using a solder sucker, first heat the soldering iron to melt the solder joint, then gently place the solder sucker on the solder joint, and the molten solder will be absorbed by the solder sucker.
  • Use anhydrous ethanol or alcohol above 95%: Dip anhydrous ethanol or high-concentration alcohol on a soft brush, brush the solder joint, and then dry it with absorbent cotton.
  • Ultrasonic cleaning: Ultrasonic cleaning uses the high-frequency oscillation of ultrasound to produce a cavitation effect, which removes the dirt on the solder joint and accelerates the dissolution process of the cleaning fluid.
soldering temperature
  • Manual cleaning: Use manual tools such as tweezers, scrapers, etc. to directly clean the residual solder on the solder joint. This method is simple but inefficient, and it is easy to damage solder joints and components.
  • Use special tools: such as desoldering mesh wire, desoldering braided belt, etc. Desoldering mesh wire is made of alloy copper wire and is suitable for removing excess solder on SMT parts solder joints and electronic components of PCB.

In short, the PCB welding temperature is determined by many factors. The melting point of tin-lead solder is 183℃ – 327℃, and the lead-free solder is 217℃ – 227℃; the tools are different, the electric soldering iron solders fine boards at 20 – 30W, 280℃ – 320℃, the hot air gun removes lead chips at 300℃ – 350℃, and the lead-free chips at 380℃ – 420℃. Special scenes are adjusted as needed, and instrument monitoring and calibration are required to ensure the quality of solder joints and products.

You may also like