pcb
Home > Blog

Archive for the ‘PCB Technology’ Category

PCB Fabrication Process, PCB Manufacturer in China
星期三, 11 6 月, 2025

Printed circuit boards (PCBs) form the foundation of nearly every electronic product today. But how does a design turn into a finished, functioning circuit board? The answer lies in the detailed PCB fabrication process.

What Is the PCB Fabrication?

The PCB fabrication process refers to the entire set of procedures used to manufacture a bare printed circuit board from your PCB design files —such as Gerbers, ODB++, or IPC-2581 formats—into an actual bare board ready for assembly. It involves a sequence of tightly controlled steps including inner layer imaging, etching, lamination, drilling, plating, outer layer imaging, surface finishing, and final testing.

The fabrication process must be precise and tightly controlled to avoid defects like layer misalignment, incomplete vias, or inconsistent impedance — all of which can cause failures.

Step-by-Step of the PCB Fabrication Process

Step 1: Engineering Preparation (DFM & CAM)

Before any physical process begins, the fabrication team conducts a Design for Manufacturability (DFM) review. This ensures your files comply with the manufacturer’s capabilities. Then, Computer-Aided Manufacturing (CAM) software analyzes and prepares files for production. This step includes:

  • Layer stackup analysis
  • Drill file optimization
  • Netlist extraction
  • Gerber validation

Step 2: Inner Layer Imaging

Each inner copper layer is made from a copper-clad laminate coated with a light-sensitive photoresist. Laser Direct Imaging (LDI) is used to expose the desired circuit pattern onto the photoresist. After UV exposure, unexposed areas are washed away during the developing stage, revealing the copper trace pattern underneath.

Step 3: Etching and Resist Stripping

The exposed copper is chemically removed using an etching solution, such as ammonium persulfate. The hardened photoresist protects the copper that should remain. Once etching is complete, the photoresist is stripped, leaving the final copper trace layout on the inner layers.

Step 4: Inner Layer Inspection and Punching

Automated Optical Inspection (AOI) is performed on every inner layer to detect shorts, opens, or width variations. Once approved, layers are optically punched with precise targets to ensure perfect layer-to-layer registration during lamination.

Step 5: Oxide Coating for Bonding

Before lamination, an oxide treatment (or alternative bonding method like black oxide or oxide alternative) is applied to increase the surface roughness of the copper. This improves resin adhesion and mechanical strength between layers.

Step 6: Lamination

Layers of copper-patterned cores and prepregs are stacked in sequence based on the final stack-up design. Using a lamination press, heat and pressure bond these materials into a multilayer PCB. Any layer shift during this step can lead to catastrophic misalignment, so precise registration is essential.

Step 7: Drilling

Drilling creates the interconnections between layers, including through-holes and vias. High-speed CNC drilling machines are used for standard holes, while laser drilling is employed for microvias in HDI PCBs. After drilling, panels undergo deburring and desmearing to clean the hole walls.

Step 8: Electroless Copper Plating

The drilled holes are non-conductive at first, so a thin layer (~1 µm) of copper is deposited chemically on the entire panel surface and hole walls. This electroless copper plating is critical for enabling conductivity across the board layers.

Step 9: Outer Layer Imaging and Electroplating

Outer layers are also coated with photoresist and exposed via LDI, defining where copper should remain. After exposure and development, the board is electroplated with copper to build up the outer traces and fill via holes. A tin plating is then applied as a temporary etch resist.

Step 10: Outer Layer Etching and Tin Stripping

The exposed areas (not protected by tin) are etched to remove excess copper. Once the etching is completed, the tin is chemically stripped, leaving behind the precise copper pattern for the outer layers.

Step 11: Solder Mask, Silkscreen, and Surface Finish

The board is coated with solder mask to insulate and protect copper traces while preventing solder bridges during assembly. Then, silkscreen (legend) is printed to mark component reference designators. Finally, a surface finish is applied to all exposed pads to improve solderability and protect against oxidation. Typical finishes include:

  • ENIG (Electroless Nickel Immersion Gold)
  • HASL (Hot Air Solder Leveling)
  • Immersion Silver
  • Hard Gold Plating
  • Soft Gold Plating
  • OSP (Organic Solderability Preservative)

Step 12: Electrical Testing

All fabricated boards undergo electrical testing to validate circuit continuity and isolation. This includes:

  • Open/short detection
  • Impedance testing (for high-speed circuits)

Test methods like flying probe or bed-of-nails based on volume and complexity

These tests confirm that the final PCB functions exactly as designed.

Step 13: Profiling, Routing, and V-Scoring

The final step in the PCB fabrication process is mechanical profiling. Boards are separated from the panel using CNC routing, V-cutting, or punching, depending on panelization methods. This step defines the exact outer dimensions of each PCB, matching the customer’s mechanical drawing.

Quality Control in the PCB Fabrication Process

Quality control (QC) is a vital part of the PCB fabrication process, ensuring that every board meets design specifications and performance standards. At each stage of production, rigorous testing and inspections are carried out to prevent defects and maintain reliability.

Key quality control practices include:

  • Design Rule Checks (DRC): Performed during CAM to validate trace width, spacing, hole size, and stack-up consistency before fabrication begins.
  • Automated Optical Inspection (AOI): Used after inner layer imaging and etching to catch shorts, opens, and trace issues.
  • X-ray Inspection: Applied in multilayer and HDI boards to verify layer registration and detect internal via or plating problems.
  • Solder Mask Registration Check: Ensures that the solder mask aligns properly with the copper pads to avoid bridging.
  • Surface Finish Evaluation: Verifies the integrity and thickness of ENIG, HASL, or OSP finishes.
  • Electrical Testing (E-Test): Confirms electrical connectivity of all nets and absence of shorts through flying probe or bed-of-nails testing.
  • Final Visual Inspection: Technicians visually inspect the board for cosmetic defects like solder mask smearing, silkscreen blurring, or mechanical damage.
PCB Fabrication Process, PCB Manufacturer in China

At Best Technology, we implement a 100% inspection rate before shipping, including impedance control and dimensional verification, supported by ISO9001, ISO13485, IATF16949, and AS9100D certifications.

Common Challenges and How to Avoid Them in PCB Fabrication

The PCB fabrication process involves over a dozen tightly coordinated steps, and even minor deviations can lead to functional failures or yield loss. Understanding the most common challenges — and how to prevent them — is crucial for design engineers and buyers alike.

1. Layer Misalignment

During lamination, even slight misregistration between inner layers can cause via breakout or impedance drift. This is often due to poor tooling, inaccurate punching, or thermal distortion. To avoid this, manufacturers must use optical punching systems and tightly control temperature profiles during lamination.

2. Inconsistent Plating in Through-Holes

Uneven plating thickness can result in poor conductivity or cracking under thermal stress. This typically stems from incorrect bath chemistry or poor hole preparation. Electroless copper plating, followed by well-regulated electrolytic plating, is essential to create reliable interconnects.

3. Solder Mask Misalignment

If the solder mask isn’t accurately registered, it can expose traces or cover pads, leading to solder bridging or poor wetting. Using laser direct imaging (LDI) for solder mask improves accuracy significantly.

4. Etching Defects

Over-etching narrows traces; under-etching leaves shorts between conductors. These issues often arise from aged chemistry or poor agitation. Manufacturers must maintain strict control over etching parameters and regularly calibrate their lines.

5. Warpage in Multilayer Boards

High-layer count PCBs or boards with uneven copper distribution may warp during lamination or reflow. This is mitigated by symmetrical stack-up design and consistent copper balancing.

The best way to avoid these issues is to partner with a manufacturer who offers early-stage engineering review, real-time process monitoring, and full transparency during production.

How to Choose a Reliable PCB Fabrication Partner?

1. Your manufacturer must be able to support your design complexity — whether it’s HDI, controlled impedance, via-in-pad, or metal-core PCBs. Check their minimum trace/space, layer count, and material compatibility before proceeding.

2. An experienced fabrication partner doesn’t just produce what you send. They should actively review your design, feedback EQ (engineer question) file, flag manufacturability concerns, and suggest layout improvements. Free DFM review, stack-up optimization, and impedance modeling are key indicators of a capable supplier.

3. Leading manufacturers use MES system to track each step of your order — from raw material to final inspection.

4. Ask your PCB manufacturer: Can you reach an engineer when issues arise? Do you get weekly updates or have to follow up multiple times? A strong partner maintains open, proactive communication, especially for urgent or high-reliability projects.

5. Choose a PCB fabrication partner who can handle both quick-turn prototypes and volume production.

Best Technology is a leading PCB manufacturer in China, we help customers from prototyping to mass production with:

✅ 24-hour quick turn

✅ Competitive pricing

✅ Full traceability using MES systems

✅ Engineering support for stack-up, impedance, and DFM

Whether you’re designing a six-layer communication board or a single-layer aluminum LED module, we can support every stage of your PCB fabrication process.

PCB Fabrication Process, PCB Manufacturer in China

Frequently Asked Questions (FAQ)

1. What’s the difference between PCB fabrication and PCB assembly?

Fabrication creates the bare board; assembly mounts components onto it.

2. How long does the PCB fabrication process take?

Standard lead times are 5–7 days, but quick-turn options (24–48 hours) are available.

3. Which surface finish should I choose for my PCB?

ENIG is preferred for SMT and fine-pitch components; HASL works well for through-hole.

4. Can I request a custom stack-up for impedance control?

Yes, Best Technology supports custom stack-ups for RF, high-speed, and HDI boards.

5. How much does the PCB fabrication process cost?

Costs depend on layer count, board size, materials, surface finish, and lead time.

You may also like

Printed Circuit Boards: PCB Design, Fabrication, Assembly and Testing
星期五, 6 6 月, 2025

When creating modern electronic devices, every step matters – from the first sketch to the final product. If you’re exploring the process of printed circuit boards, or PCBs, this guide is your one-stop resource. We’ll walk through PCB design, fabrication, assembly, and testing, covering what engineers and buyers need to know. Whether you’re designing your first board or sourcing from a manufacturer, getting each step right ensures performance, reliability, and cost-efficiency.

Printed Circuit Boards: PCB Design, Fabrication, Assembly and Testing

What Is a Printed Circuit Board?

A printed circuit board (PCB) is the backbone of nearly all electronic systems. It’s a flat board that holds and connects electronic components using conductive tracks, pads, and vias etched from copper sheets laminated onto a non-conductive substrate. Common materials include FR4, ceramic, aluminum, and polyimide.

PCBs come in many forms: single-sided, double-sided, and multilayer PCB, supporting everything from simple gadgets to complex military electronics. Their role is simple yet critical: provide physical support and reliable electrical connections.

How to Design a PCB Board?

The PCB design phase sets the tone for the entire lifecycle. It begins with defining the schematic, which maps out the electronic connections between components. Once that’s ready, designers move to layout – placing components and routing traces.

Key steps include:

  1. Creating schematics using software like Altium Designer, KiCAD, or Eagle.
  2. Assigning footprints to components for proper placement.
  3. Defining board dimensions, layer stack-up, and signal flow.
  4. Routing signals with attention to trace width, impedance, and clearance.
  5. Adding vias, copper pours, and power planes for optimal performance.
  6. Design Rule Check (DRC) to verify spacing, trace width, and other constraints.
  7. Generating Gerber files, which are the manufacturing blueprints.
Printed Circuit Boards: PCB Design, Fabrication, Assembly and Testing

Each design must balance space, power, heat, cost, and manufacturability. One overlooked detail could delay your entire project.

Considerations During PCB Design Phase

Designers must juggle multiple variables beyond schematic accuracy. Here are essential considerations to optimize performance and reduce failure risks:

1. Component Placement: Keep analog, digital, and power circuits separate to reduce interference. Group related components logically to minimize trace lengths.

2. Signal Integrity: For high-speed designs, impedance matching, differential pair routing, and minimizing crosstalk are vital.

3. Thermal Management: Use thermal vias, copper pours, and heat sinks to handle heat dissipation—especially in power electronics.

4. Design for Manufacturability (DFM): Ensure trace width, drill sizes, and clearances match manufacturer capabilities.

5. EMC and EMI Compliance: Ground planes, shielding, and filtering components help meet regulatory standards.

6. Mechanical Constraints: Don’t overlook mounting holes, connector alignment, or enclosure fit. These small details can turn into costly errors later.

Good design minimizes rework, improves lifespan, and lowers costs across production.

Full PCB Fabrication Process – Step by Step

Once the design is complete, the PCB fabrication process turns digital files into a tangible board. Here’s how it happens:

1. Material Selection

The manufacturer selects base materials like FR4, aluminum, or ceramic depending on thermal, mechanical, and electrical requirements.

2. Inner Layer Imaging (for Multilayer PCBs)

Each inner copper layer is patterned with the circuit using photoresist, UV exposure, and etching techniques.

3. Lamination

The etched inner layers are stacked and laminated under heat and pressure, forming a solid multilayer structure.

4. Drilling

Holes are drilled to create vias for electrical connections between layers. Laser drilling is used for microvias.

5. Plating and Copper Deposition

Holes are plated with copper using electroplating to ensure conductivity across layers.

6. Outer Layer Imaging

Outer copper layers are patterned similar to the inner layers using photoresist and etching.

7. Solder Mask Application

A solder mask is applied to insulate the board and protect traces, leaving pads and holes exposed for soldering.

8. Silkscreen Printing

Component labels, logos, and reference indicators are printed on the board.

9. Surface Finish

A surface finish like HASL, ENIG, OSP, or Immersion Silver is applied to exposed copper pads to protect them and improve solderability.

10. Electrical Testing

Flying probe or bed-of-nails tests check for open circuits and shorts.

Common PCB Assembly Issues During Manufacturing

During PCB assembly, components are mounted and soldered onto the board. This phase can be manual or automated using SMT (surface-mount technology) and THT (through-hole technology).

But several issues can disrupt this process:

1. Tombstoning: A component lifts on one side during reflow, causing connectivity failure.

2. Solder Bridges: Excess solder connects two pins unintentionally, leading to short circuits.

3. Cold Joints: Poor soldering results in weak mechanical bonds and unreliable connections.

4. Misaligned Components: Incorrect placement, often caused by poor paste application or pick-and-place calibration.

5. PCB Warping: Thin or large boards may bend during reflow, affecting soldering and mechanical integrity.

6. Component Damage: Excessive heat or mishandling can destroy delicate ICs or capacitors.

Quality control, professional assembly lines, and well-prepared Gerber + BOM files help avoid these issues.

How to Test Printed Circuit Boards?

After assembly, PCB testing ensures the product works before final integration. There are several testing levels depending on the application and budget:

Printed Circuit Boards: PCB Design, Fabrication, Assembly and Testing

1. Visual Inspection

The simplest method. Engineers check for physical defects like solder bridges, missing components, or alignment issues.

2. Automated Optical Inspection (AOI)

AOI uses cameras to scan boards for soldering quality, polarity, and presence of components.

3. In-Circuit Testing (ICT)

Tests each component’s electrical characteristics by probing specific test points. It’s fast and accurate for large-volume production.

4. Flying Probe Testing

Uses robotic probes to test low-to-medium volume PCBs without the need for custom fixtures.

5. Functional Testing (FCT)

Verifies the complete assembled PCB in real-world operating conditions. Essential for high-reliability applications.

Testing isn’t optional—it’s critical. Faulty boards cost time, money, and customer trust.

Why Consider Best Technology’s Turnkey Service?

If you’re tired of juggling multiple vendors for PCB design, fabrication, assembly, and testing, Best Technology offers a full turnkey PCB service that simplifies the process.

Here’s why clients worldwide trust us:

◎ Technical Support Before & After Sales

◎ Prototype & Small Volume Welcome

◎ Quick Turn-out, On-time Delivery

◎ High Quality, Special Request Available

◎ Strong R&D Team, Know How-To

◎ Rich Experience (>13 Years)

◎ Prompt Feedback (within 12H)

◎ One-stop Service (PCBA/Assembly)

Conclusion

Printed circuit boards are at the heart of modern electronics, and getting the design, fabrication, assembly, and testing right is non-negotiable. Each step has its role—and skipping or rushing any part can lead to costly failures.

Whether you’re building a simple sensor or a complex industrial controller, choosing a partner like Best Technology can make the journey smoother. We understand what engineers, startups, and procurement teams need: fast delivery, quality control, and transparent communication.

FAQs

1. What software is used to design PCBs?

Tools like Altium Designer, Eagle, KiCAD, and OrCAD are commonly used for schematic and PCB layout.

2. How long does PCB fabrication take?

Standard fabrication takes 3–7 days. Express services can deliver in 24–48 hours depending on complexity.

3. What is the difference between PCB and PCBA?

PCB is the bare board. PCBA is the board after components are assembled and soldered.

4. How much does PCB assembly cost?

Costs vary based on quantity, complexity, part types, and whether parts are sourced by the manufacturer or supplied by the customer.

5. Does Best Technology support low-volume PCB manufacturing?

Yes. We support both low and high-volume production and offer prototyping services for new designs.

You may also like

High-quality PCB Contract Manufacturing Service
星期四, 5 6 月, 2025

What Is PCB Contract Manufacturing?

PCB contract manufacturing is a process where companies outsource the production of printed circuit boards to a third-party manufacturer. This includes not just making the board, but also assembling components, running functional tests, and sometimes even final product packaging. It allows companies to focus on core tasks like product development and marketing, while the technical side of electronics production is handled by experts.

At its core, PCB contract manufacturing saves time, reduces production costs, and ensures consistency in quality. For startups and global electronics brands alike, finding a dependable contract manufacturer can significantly boost speed-to-market and reduce project risks.

High-quality PCB Contract Manufacturing Service

Our Printed Circuit Board Services

At Best Technology, we offer a complete range of services under one roof. Whether you’re developing a new electronic product or scaling up production, we handle everything from the initial design to final functional testing. Here’s what we bring to the table:

  • PCB Layout & Design

We help you start from scratch or improve your existing Gerber files. Our layout team is experienced in high-density routing, impedance control, and EMC-compliant designs. With tools like Altium Designer and CAD, we ensure accurate and efficient PCB layouts tailored to your project needs.

  • OEM & ODM PCB Manufacturing

Whether you need OEM or ODM service, we have the capability to take your concept and turn it into a working product. Our engineering team collaborates closely with clients to deliver custom solutions that are production-ready.

  • Electronic Components Assembly

From SMT (Surface Mount Technology) to through-hole assembly, our facility is equipped for full-scale PCBA (Printed Circuit Board Assembly). We support both leaded and RoHS-compliant assembly and offer automated inspection (AOI), X-ray, and BGA rework services to guarantee every joint is solid and reliable.

  • Wire Harness Assembly

We also supply PVC/PE/TPU/LZSH hook-up wire, flat cable, connector wire harness for machinery equipment, and cables for the field of electronic appliances, DC power supply, audio video devices, toys, medical equipment, communication devices, electrician & electrical, computer accessories cable, and so on.

  • Box Building Assembly

We don’t stop at the board level. If you need enclosure integration, cable harnessing, or full unit assembly, our box building assembly service is available. This end-to-end solution simplifies your supply chain and gives you more control over the finished product.

  • Functional Testing

We provide full functional testing based on your test procedure or help you develop one. This includes power-on tests, signal integrity verification, and custom fixture testing. We ensure your board works perfectly before it reaches your customers.

High-quality PCB Contract Manufacturing Service

What PCBs We Can Fabricate?

Our team at Best Technology specializes in a wide range of printed circuit board types. No matter your project’s complexity or environment, we’ve got you covered. Here are some products that we can make, but not limited to these PCBs.

  • Extra Thin PCB

For devices that require tight packaging like smart cards, cameras, or medical sensors, we offer ultra-thin PCBs as thin as 0.1mm. These boards maintain strength while saving space.

  • HDI PCB

High-Density Interconnect (HDI) PCBs support advanced electronics with fine-pitch components, blind and buried vias, and micro-via-in-pad technology. These are perfect for smartphones, tablets, and compact IoT devices.

  • RF PCB

We manufacture RF (Radio Frequency) PCBs using low-loss materials like Rogers, Taconic, and PTFE laminates. These boards are designed for wireless communication, antennas, and radar systems, where signal clarity matters most.

  • Heavy Copper PCB & Busbar PCB

When high current is involved, such as in automotive or industrial power supplies, heavy copper and busbar PCBs are necessary. We can produce boards with copper thickness from 2oz to 20oz, ensuring excellent thermal and electrical performance.

  • Metal Core PCB

For LED lighting and power conversion applications, our metal core PCBs (MCPCBs) provide efficient thermal dissipation. Aluminum and copper cores are both available depending on your thermal and mechanical needs.

  • Ceramic PCB

Using materials like aluminum nitride and alumina, ceramic PCBs deliver outstanding heat resistance and insulation. We have mature manufacturing technologies, including: Thick film ceramic PCB, thin film ceramic PCB, AMB ceramic PCB, DBC & DPC ceramic PCB, HTCC & LTCC ceramic PCB.

  • Flex Circuit & Rigid-Flex PCB

Flex circuits offer excellent bendability, reducing connectors and saving space. Rigid-flex PCBs combine the best of both worlds and are widely used in wearables, drones, and other portable electronics.

  • High-Speed PCB

We design and produce high-speed PCBs with controlled impedance, low-loss materials, and proper stack-ups. These are ideal for applications like 5G networks, servers, and high-frequency digital communication.

  • High TG PCB

When operating temperatures exceed 170°C, High-TG (glass transition temperature) PCBs are the right choice. These boards are more stable thermally and mechanically, perfect for automotive and industrial applications.

  • IC Substrate

We also support packaging solutions with IC substrates that act as a bridge between chips and PCBs. Our substrates offer fine-line traceability and are used in semiconductor packaging.

  • Ceramic Packages

Ceramic packages provide superior hermetic sealing and thermal cycling endurance. These are used to package sensitive ICs in defense, aerospace, and critical medical applications.

High-quality PCB Contract Manufacturing Service

FR4 PCB Capability in Best Technology

At Best Technology, we offer a wide range of FR4 PCBs — the most common material in the PCB industry — from consumer electronics to industrial control systems and automotive electronics. Whether it’s single-sided, double-sided, or multi-layer (up to 40 layers), we provide:

✅ General Capabilities

  • Layer Count: 1–40 layers
  • Board Size: Up to 580mm × 1200mm
  • Board Thickness: 0.2mm to 3.2mm
  • Copper Thickness: 0.5oz to 6oz (outer), 0.5oz to 3oz (inner)
  • Finished Hole Size: ≥ 0.10mm
  • Minimum Line Width / Spacing: 3mil / 3mil (0.075mm)
  • Aspect Ratio: Up to 12:1
  • Impedance Control: ±10% or better

✅ Material Options

  • Standard FR4: Tg135°C
  • High-TG FR4: Tg170°C to Tg180°C
  • Halogen-Free FR4: Environmentally friendly for RoHS/REACH applications
  • Low Dk/Df FR4: For better signal performance in high-speed circuits

✅ Surface Finishes

  • HASL (Hot Air Solder Leveling) – Leaded & Lead-free
  • ENIG (Electroless Nickel/Immersion Gold)
  • OSP (Organic Solderability Preservatives)
  • Immersion Tin / Immersion Silver
  • ENEPIG (Electroless Nickel Electroless Palladium Immersion Gold)
  • Gold Finger (with beveling & plating options)

✅ Solder Mask & Silkscreen

  • Solder Mask Colors: Green, Blue, Red, Yellow, Black, White, Purple, Matte options
  • Silkscreen Colors: White, Black, Yellow
  • Solder Mask Thickness: 7–40μm
  • Min Solder Mask Dam: 0.075mm (3mil)

✅ Drilling & Via Types

  • Mechanical Drilling (for standard vias and plated holes)
  • Laser Drilling (for microvias and blind/buried vias)
  • Via Filling & Capping (VIPPO: via-in-pad plated over)
  • Tented, Plugged, and Stacked Vias for HDI applications

✅ Special Capabilities

  • Controlled Impedance Tolerance: ±10% (custom up to ±8%)
  • Edge Plating / Castellation
  • Countersinks & Counterbores
  • Peelable solder mask
  • Carbon ink printing (for jumpers, contact pads, etc.)
  • Via tenting, filling, and plugging with resin

Electrical Testing & Inspection

  • 100% E-test (Flying Probe or Bed of Nails)
  • AOI (Automated Optical Inspection)
  • X-ray for BGA and inner layers
  • ICT, FCT, and aging testing available

With a monthly capacity of over 30,000 square meters and a 98% on-time delivery rate, our FR4 line is built to serve both prototypes and mass production.

Certifications & Quality Assurance in PCB Manufacturing

At Best Technology, quality isn’t just a goal — it’s a standard built into every step of our manufacturing process. To ensure compliance with international regulations and industry-specific requirements, we maintain a comprehensive set of certifications, including:

  • ISO 9001:2015 – Quality Management System
  • ISO 13485:2016 – Medical Device Quality System
  • IATF 16949:2016 – Automotive Quality Management
  • AS9100D – Aerospace & Defense Quality Management
  • UL Certification
  • RoHS & REACH Compliance
  • IPC Standards Compliance – IPC-A-600 and IPC-A-610 Class 2 & Class 3 for PCBfabrication and assembly

One-Stop High-Quality PCB Contract Manufacturer

When you’re looking for a reliable partner to handle your PCB contract manufacturing, Best Technology is ready to deliver more than just boards. We provide full-service support — from design to delivery — with speed, precision, and attention to detail.

We offer a complete solution that includes PCB fabrication, components sourcing, assembly, testing, and even box build — all under one roof. That means you don’t have to juggle multiple suppliers or waste time coordinating between factories. You get a dedicated project manager, clear communication, and consistent quality from start to finish.

Here’s why companies from over 80 countries trust us with their PCB contract manufacturing needs:

  • Engineering Support: this isn’t traditional engineer support, in Best Technology, every sales are engineer, they are professional so that can save much time on design communication and can give you the best solutions.  
  • Fast Turnaround: we offer quick-turn prototyping (as fast as 24 hours) and competitive lead times for volume production.
  • Global Shipping: Whether you’re in the US, Germany, Japan, or Australia, we ship your orders promptly with DHL, FedEx, UPS, air & ocean shipment.
  • Traceability System: Our ERP system keeps detailed records for every board we produce, offering transparency and traceability.
  • WIP Update Every Week: Every customer can enjoy one-to-one sales-assistant service, they will update the product status & share videos every week for you, so that you can closely to your PCBs.
  • Cost-Effective Solutions: With advanced production lines and a mature supply chain, we provide cost-effective options without sacrificing quality.

PCB contract manufacturing can significantly reduce your product development cycle and overhead. By partnering with a professional and certified provider like Best Technology, you ensure every step — from PCB layout to functional testing — meets your project goals with precision and speed.

Whether you need a simple FR4 board or a high-performance ceramic PCB, our comprehensive services and commitment to quality make us a trusted choice for businesses around the world.

Frequently Asked Questions

1. What industries does Best Technology serve?

We serve a broad range of industries including medical, automotive, aerospace, telecom, and consumer electronics.

2. Can Best Technology support low-volume or prototype orders?

Yes, we support both small-batch prototypes and high-volume production with flexible minimum order quantities.

3. Do you offer component sourcing services?

Absolutely. We have partnerships with authorized distributors to source genuine components and manage the BOM for you.

4. What file formats do you accept for PCB layout?

We accept Gerber, ODB++, and other formats such as Altium, Eagle, and CAD-based files.

5. How can I request a quote for PCB contract manufacturing?

Simply send your files and requirements via our online form or email, and our sales team will get back to you within 24 hours.

You may also like

How to Optimize PCB Panelization for Higher Yield and Lower Cost?
星期四, 22 5 月, 2025

PCB panelization is a critical step in the manufacturing process that directly impacts production efficiency, material waste, and overall costs. Poor panel design can lead to lower yields, increased scrap, and delays in assembly. In this blog, we’ll explore actionable strategies to optimize PCB panelization for higher yield and cost savings.

How to Optimize PCB Panelization for Higher Yield and Lower Cost?

Why Panelization Matters in PCB Manufacturing?

Panelization refers to arranging multiple PCB designs onto a single manufacturing panel (or “array”) for batch processing. Key benefits include:

  • Reduced material waste: Maximizing panel space utilization.
  • Faster assembly: Enabling automated pick-and-place machines to process multiple boards simultaneously.
  • Lower handling costs: Fewer individual boards to manage during fabrication and assembly.

However, suboptimal panelization can lead to:

  • Warpage during soldering.
  • V-score or routing errors.
  • Increased breakage during depaneling.

6 Tips to Optimize PCB Panelization

Base on our 19+years experiences in the PCB manufacturing field, today I would like to share you 6 Strategies to Optimize PCB Panelization

1. Choose the Right Panel Size

  • Align your PCB dimensions with standard panel sizes (e.g., 18″x24″, 21″x24″) to minimize material trimming.
  • Example: If your board is 80mm x 60mm, arrange 4×6 units on a 324mm x 480mm panel to reduce unused space.
6 Tips to Optimize PCB Panelization

2. Optimize Board Arrangement

  • Rotation: Rotate boards to fit more units per panel.
  • Mirroring: Use symmetrical designs to avoid “wasted” gaps.
  • Nesting software: Leverage tools like CAM350 to automate optimal layout generation.

3. Select the Best Depaneling Method

The choice of depaneling (separating individual boards) affects yield and edge quality:

  • V-Score: Low cost and fast, but requires straight edges and may weaken boards.
  • Tab Routing: Ideal for irregular shapes but adds milling time.
  • Laser Cutting: Precision for high-density designs, but higher cost.

Rule of thumb: Use V-score for rectangular boards and routing for complex shapes.

4. Add Breakaway Tabs and Mouse Bites

  • Breakaway tabs: Small connectors between boards to prevent movement during assembly.
  • Mouse bites: Perforated holes for easy manual separation.
  • Spacing: Maintain 1.5–2mm between boards to avoid solder mask bridging.
How to Optimize PCB Panelization for Higher Yield and Lower Cost?

5. Incorporate Fiducials and Tooling Holes

  • Add global fiducials to the panel for accurate alignment during SMT assembly.
  • Include tooling holes (3.2mm diameter) to secure the panel during drilling and routing.

6. Balance Quantity vs. Risk

  • Overcrowding panels increases the risk of cross-board defects.
  • Underutilizing panels raises material costs.
  • Recommended: Aim for 4–20 boards per panel, depending on size and complexity.

Case Study: Cost Savings Through Smart Panelization

A consumer electronics manufacturer redesigned their 50mm x 50mm IoT module panel:

  • Initial design: 8 boards/panel with 15% wasted space.
  • Optimized design: 12 boards/panel using rotated layouts and shared tooling holes.
  • Results:
    • 15% reduction in material costs.
    • 10% faster SMT assembly.
    • Fewer depaneling errors due to improved tab routing.

Common Panelization Mistakes to Avoid

  1. Ignoring manufacturer capabilities: Always consult your PCB fab’s panel size and tolerances.
  2. Overcomplicating shapes: Complex panels increase milling time and scrap rates.
  3. Skipping test coupons: Include test patterns for impedance control and quality checks.

Conclusion

Optimizing PCB panelization requires a balance of geometric efficiency, process knowledge, and collaboration with manufacturers. By implementing these strategies, you can reduce waste, improve yields, and lower production costs without compromising quality.

Pro Tip: Use panelization-specific design rules in tools like Altium or KiCad to automate compliance checks.

Also, if you want to know more about how to optimize PCB Panelization for Higher Yield and Lower Cost, please feel free to inquiry from us.

You may also like

Mobile Phone PCB Prototype, Mobile Circuit Boards Manufacturer
星期一, 28 4 月, 2025

Have you ever wondered what powers your mobile phone behind the screen? Every tap, swipe, or call you make is possible because of one hidden hero: the mobile phone PCB. In simple terms, the mobile circuit board connects and controls all parts of your phone. It links the battery, screen, camera, processor, and even your wireless network. Without it, nothing would work.

At Best Technology, we design and manufacture custom mobile PCBs that support today’s advanced smartphones. As a leading mobile PCB manufacturer both in China and Vietnam, we have decades years of experience in producing high-quality boards for mobile devices, wearables, and smart electronics. Certificated by ISO9001, IATF16949, ISO13485, AS9100D, it shows we have enough capability to produce highest quality mobile PCB board. Whether you need flexible, rigid, HDI, RF or multilayer PCBs, we deliver one-stop solutions with fast turnaround and competitive pricing.

Mobile Phone PCB Prototype, Mobile Circuit Boards Manufacturer

What Is a Mobile Phone PCB?

A mobile phone PCB is the core of your smartphone, which drives your phone be intelligent. It looks like a green or black plate populated with many small electronic parts. These components are connected through thin copper lines etched onto the board. Together, they power your phone and make sure each part works smoothly.

In smartphones, the PCB board mobile phone is usually a multi-layer board, meaning it has several layers stacked together. This design helps save space and supports high-speed data processing. The PCB also holds all essential parts like the processor, memory, charging port, and wireless chips.

What Does a Mobile Phone PCB Actually Do?

A mobile phone PCB acts like the brain and nervous system, it mainly used to connect and manage every part of the phone, its working principle is:

  • Power distribution: It sends power from the battery to other parts.
  • Signal transmission: It lets the processor talk to the screen, camera, and sensors.
  • Component support: It holds everything in place and keeps them working together.

Without the mobile phone PCB, the battery wouldn’t know how to charge, the screen wouldn’t respond, and the speaker wouldn’t play music. It handles all the behind-the-scenes activity while you use your apps and make calls.

Mobile Phone PCB Prototype, Mobile Circuit Boards Manufacturer

Core Components on a Mobile Phone PCB

A mobile phone PCB always is a populated PCB. At the top of the PCB, you’ll find the antenna point, where the antenna connects. Your phone connects to Wi-Fi, Bluetooth, and cellular networks through these antennas. Each component on the PCB plays its unique role:

  • Antenna Switch: A 16-leg switch that controls signal direction. Sometimes built together with the PFO.
  • PFO (Power Frequency Oscillator): Manages signal frequency. Found next to the antenna switch.
  • Network IC: Controls mobile network functions. In some phones, it’s built into the CPU.
  • Power IC: Found near brown capacitors. Regulates power across the PCB.
  • CPU (Processor): The largest IC. Handles all system commands and performance tasks. Some phones have two CPUs.
  • Flash IC: Stores system data and software. Located beside the CPU.
  • Logic IC: A 20-pin chip. Manages basic logic operations.
  • Charging IC: Found beside R22. Controls battery charging.
  • Audio IC: Controls sound functions. Placed close to the Power IC.
  • Capacitors: Store and release electrical energy. Help stabilize power supply.
  • Resistors: Control the flow of current. Protect other parts from too much power.
  • Diodes: Allow current to flow in one direction only. Prevent power damage and signal errors.

Below is a multi-layer PCB used in iphone. These parts make it possible for you to browse, take photos, and connect with the world.

Mobile Phone PCB Prototype, Mobile Circuit Boards Manufacturer

Why Multi-layer PCBs Are Standard in Smartphones?

Today’s smartphones are like mini computers. They handle everything from streaming video to running powerful apps. To keep up, mobile phone PCB design has evolved. One of the biggest upgrades? The switch to multi-layer PCBs. Here we listing main advantages of using multi-layer PCBs in mobile phone.

Firstly, multi-layer PCBs offer higher circuit density, allowing more components like processors and memory to fit in the limited space. For example, the iPhone 14 Pro uses a 10-layer PCB to deliver powerful functionality in a compact design.

Secondly, they improve high-speed signal transmission by reducing interference through ground and shielding layers, ensuring stable and fast data transfer—a must for modern smartphones.

Additionally, multi-layer PCBs reduce the size and weight of smartphones. By accommodating more circuits in the same area, they help achieve smaller, lighter designs, like in the Apple Watch Series 8.

Finally, multi-layer PCBs enhance reliability and mechanical strength. Their complex construction improves durability and vibration resistance, ensuring a longer-lasting product.

How Inner and Outer Layers Interact in a Mobile PCB Stack?

In a mobile PCB board, the inner and outer layers work together like a team. The outer layers handle the connection of chips, antennas, and components you can see. Meanwhile, the inner layers manage signal traces, power distribution, and ground planes.

Signals often travel between these layers through vias—small holes filled with metal that link one layer to another. This allows for faster, cleaner communication between the mobile PCB components, such as the CPU, RAM, and radio circuits.

Mobile Phone PCB Prototype, Mobile Circuit Boards Manufacturer

Materials Used in Mobile PCB Board

Choosing the right materials is crucial in mobile phone PCB manufacturing. Each layer and part of the board serves a different purpose, so engineers carefully select materials to match performance needs, durability, and size constraints. Here’s a comparison of commonly used mobile PCB materials:

MaterialDescriptionProsCommon Use in Mobile PCB
FR4Fiberglass-reinforced epoxy laminateCost-effective, stable electrical propertiesBase material in most mobile PCB cores
PolyimideFlexible and heat-resistant materialGreat for flexible PCBs and foldable applicationsUsed in camera modules, folding phones
RogersHigh-frequency laminateLow dielectric loss, excellent RF performanceAntenna sections, 5G, Wi-Fi, Bluetooth
Teflon (PTFE)Non-stick, high-performance polymerUltra-low signal loss, ideal for high-speed signalsUsed in high-speed communication layers
CeramicAdvanced inorganic compositeExcellent heat dissipation, high frequency stabilityPower modules, 5G RF front-end, shielding

PCB Layout Basics for Mobile Phones

A solid layout is the backbone of any mobile phone PCB. Designers start with the schematic, which maps every component and connection. Mobile PCB layout focuses on a few key goals:

  • Short signal paths to avoid delay.
  • Clear power and ground planes for stability.
  • Thermal zones to manage heat.
  • Shielded areas for RF sections like Wi-Fi and GSM modules.
  • Placing the processor, RAM, power management ICs, and antennas carefully prevents problems later.

Warm tips:

Keep power and ground layers as solid planes. Avoid breaks or thin sections, which create voltage drops. Also, decoupling capacitors should sit close to power pins of chips.

Tips for GSM, Wi-Fi, Bluetooth, and 5G Mobile PCB Antennas

  1. Keep antennas away from metal—metal blocks signals.
  2. Use ground clearance around antenna traces to reduce noise.
  3. Match impedance of the RF trace to avoid reflection.
  4. Add shielding near high-speed digital lines to prevent signal loss.

For 5G, which uses millimeter-wave bands, the routing must be super precise. Even a few millimeters can affect signal strength. Tools like electromagnetic simulation software help refine these paths.

How AI and Automation Are Changing PCB Layout?

AI and automation have brought big changes to mobile PCB design in this two year. Instead of placing parts manually, designers can now rely on smart layout tools that optimize paths automatically. Machine learning predicts optimal routing paths. Automation assists in component placement, thermal analysis, and EMI reduction. They suggest better placements in seconds—saving hours of work.

AI also speeds up mobile PCB testing. It spots defects on boards using image recognition. That means more accurate inspections, less rework, and faster production.

As AI tools improve, they’ll continue to reduce errors, cut costs, and deliver better mobile board designs. It’s a leap forward for the industry.

What Does Best Technology Serve You?

At Best Technology, we provide complete solutions for mobile PCB design and manufacturing. Whether you’re developing a new smartphone, tablet, or wearable device, we help you build it from the ground up. Our services including but not limited to:

  • Custom mobile phone PCB layout and design based on your needs
  • Single-layer to 32+ layer boards, including HDI, rigid-flex, and high-frequency options
  • Advanced material selection such as FR4, polyimide, Rogers, and BT epoxy
  • Rapid prototyping and small-volume production with quick delivery
  • Full testing services like AOI, flying probe, impedance, and X-ray inspection

With over 18 years in the PCB industry, we’ve supported top-tier brands in building reliable, high-performance mobile electronics. Our team works closely with customers and give the best suggestions to optimize your mobile circuit board design. If you are interested in the mobile PCB develop, you are welcome to contact our team at sales@bestpcbs.com.

FAQs

1. What does a mobile phone PCB diagram show?

It shows where each component is placed on the board and how they are connected through copper traces.

2. How can I avoid power issues in PCB layout?

Use ground planes, short power paths, and place capacitors close to chips for voltage stability.

3. How do I identify damaged parts on a mobile PCB?

Use thermal cameras, multimeters, and reference schematics to locate shorted, burned, or faulty components.

4. What makes Best Technology a strong mobile PCB manufacturer?

They provide full-stack design-to-production all in one service, expert engineering support, DFM check, SI, PI analysis and a proven track record in mobile electronics.

You may also like

Copper Foil PCB | HTE vs RTF Copper Foil | Copper Foil PCB Manufacturers
星期一, 14 4 月, 2025

What is Copper Foil PCB?

A copper foil PCB is a type of printed circuit board where copper foil is laminated onto the base material to form the conductive layer. This copper layer is what carries electrical signals and power between different parts of the board. Without it, a PCB wouldn’t function at all.

The copper is typically applied through lamination, where thin sheets of copper foil are bonded to a substrate, usually made of fiberglass-reinforced epoxy resin like FR4. This copper layer is then etched to create precise paths, known as traces, that connect components across the board.

There are also different thicknesses of copper foil used, which affect the board’s ability to carry current and dissipate heat. The standard thickness is usually 1 oz/ft² (about 35μm), but heavier copper options like 2 oz or 3 oz are often used in power electronics or high-temperature applications.

Copper Foil PCB | HTE vs RTF Copper Foil | Copper Foil PCB Manufacturers

What is the Purpose of Copper Foil in PCB?

The main role of copper foil is to carry electric current across the circuit. It’s the path for data, signals, and energy. Without copper foil, there would be no communication between components.

Besides that, copper foil helps in thermal transfer. When current flows, heat is generated. Copper helps in spreading this heat evenly, reducing hot spots. That’s key in designs with dense parts or power-hungry chips. Also, copper layers add mechanical strength to the board, supporting solder joints and reducing flex.

What are the Different Types of Copper Foils?

Copper foil types vary based on how they’re made, how rough they are, and what kind of performance they offer in real PCB applications. Choosing the right type can make a big difference in signal clarity, layer adhesion, and long-term reliability. Let’s see the most common types used in the PCB industry:

What are the Different Types of Copper Foils?

1. Electrodeposited (ED) Copper Foil

Electrodeposited copper foil is the most widely used type in standard rigid PCBs. It’s made through an electrochemical process where copper ions are deposited onto a rotating stainless steel drum. The side in contact with the drum becomes smooth, while the other side is naturally rough.

ED copper foil is great for multilayer rigid boards, consumer electronics, and automotive circuits. When treated with surface chemicals, it bonds well to laminates and resists layer separation.

2. Rolled Annealed (RA) Copper Foil

RA copper foil is made by mechanically rolling solid copper into very thin sheets and then annealing it (heating and cooling) to relieve stress. You’ll find RA copper in flex circuits, flex-rigid PCBs, wearable electronics, and mobile devices. When boards must flex without breaking, RA is the go-to.

3. Reverse Treated Foil (RTF)

RTF is a type of ED foil where the shiny side is treated instead of the rough side. This treatment adds micro-etching or chemical bonding to enhance adhesion between the copper and the laminate. RTF is popular in HDI (High-Density Interconnect) boards, high-speed digital circuits, and RF designs where signal loss must be controlled.

4. Very Low Profile (VLP) and Ultra-Low Profile (ULP) Copper Foils

These are smoother versions of standard ED foils, created to reduce conductor roughness. VLP and ULP foils are still electrodeposited, but they go through extra steps to minimize surface peaks and valleys. They are used in high-speed digital systems, data centers, 5G antennas, and any application where clean signal transmission matters.

5. High-Temperature Elongation (HTE) Copper Foil

HTE copper foil is a variant of ED copper, enhanced for high thermal and mechanical stress. It resists cracking under repeated heating and cooling cycles. HTE is preferred for automotive, power electronics, and multilayer PCBs that go through reflow soldering or see high current loads.

6. Resin-Coated Copper Foil (RCC)

RCC combines copper foil with a thin layer of resin. This resin bonds directly to the core without needing prepreg sheets, which simplifies the lamination process. Mainly in mobile phones, compact devices, or where thin layers and high accuracy are needed.

Here is a summary comparison table between them:

Copper Foil TypeStrengthFlexibilitySmoothnessSignal PerformanceApplication
EDHighLowModerateStandardRigid PCBs
RAMedium  HighHighGoodFlex PCBs
RTFHighMediumTreated  ExcellentRF, HDI
VLP/ULP  MediumMediumVery HighSuperior5G, high-speed
HTEVery HighLow  ModerateStandardPower boards
RCCLowMediumHighGoodThin mobile boards

What is the Roughness of Copper Foil in PCB?

‌The roughness of copper foil on PCB ‌ refers to the unsmoothness of the copper foil surface, Copper foil roughness affects how well signals move through the board. In high-speed designs, surface texture matters a lot. Rough copper increases insertion loss. This weakens the signal and causes noise.

What is the Roughness of Copper Foil in PCB?

Roughness is usually measured in microns, which is usually quantified by Ra, Rz and Rq. Lower values are better for RF or high-speed data.

  • ‌Ra‌: The arithmetic average of the absolute value of the contour deviation over the sampling length, applicable to copper foil surface.
  • ‌Rz‌: Sum of the average of the 5 largest profile peak heights and the average of the 5 largest profile valley depths over the sampling length for copper foil rough surface.
  • ‌Rq‌: Means RMS (Root means square) value, it also is a roughness index.‌

PCB Copper Thickness Chart

Copper thickness is often given in ounces per square foot. But that doesn’t mean much until you convert it. Here’s a helpful chart:

Copper Weight (oz/ft²)Thickness (µm)Thickness (mil)
0.5 oz~17 µm~0.67 mil
1 oz~35 µm~1.37 mil
2 oz~70 µm~2.74 mil
3 oz~105 µm~4.11 mil
4 oz~140 µm~5.48 mil
  • For single & double sided PCB, the copper foil thickness is about 35um, 50um, 70um;
  • For multi-layer PCB, its outer layer copper thickness is 35um, and inner layer copper thickness is 17.5um (1/2oz).

Designers choose copper weight based on current flow and thermal limits. Thicker copper is used in power PCBs. Thinner layers are more common in signal circuits or HDI boards.

HTE vs RTF copper foil

When it comes to choosing the right copper foil for high-performance PCBs, HTE (High-Temperature Elongation) and RTF (Reverse Treated Foil) are two of the most commonly used options.

  • HTE Copper Foil

HTE copper foil is a specially processed electrodeposited foil that’s engineered to handle high thermal and mechanical stress. The term “high-temperature elongation” refers to the foil’s improved flexibility and stretch resistance when exposed to heat.

It’s treated chemically to improve adhesion strength, making it more reliable during multiple soldering cycles. The surface has a consistent profile that bonds well with different dielectric materials.

Key Features of HTE Foil:

  • Strong peel strength
  • Durable under repeated heating
  • Excellent for plated-through-hole (PTH) reliability
  • Withstands lamination and solder reflow cycles
  • RTF Copper Foil

RTF, or Reverse Treated Foil, is also made through an electrodeposition process, but with one key difference: the shiny side gets treated instead of the rough side. This treatment applies a fine, uniform microstructure that enhances bonding without creating high surface roughness.

This smoother surface makes RTF a preferred option in high-speed signal and RF PCB applications where low signal loss is critical.

Key Features of RTF Foil:

  • Lower surface roughness
  • Better electrical performance at high frequencies
  • Improved signal integrity
  • Balanced peel strength and performance

PCB Copper Electrical Conductivity

Copper has one of the highest electrical conductivities of any metal. That’s why it’s the go-to choice for PCBs. The typical conductivity of copper used in PCBs is about 5.8 x 10⁷ S/m (Siemens per meter).

This high conductivity allows small traces to carry high current with low voltage drop. It also reduces signal distortion, which is key in high-speed or RF applications.

Still, conductivity depends on purity. Most PCB foils use 99.9% pure copper. If copper is oxidized or poorly handled, conductivity drops. That’s why clean processes and proper lamination are important.

How to Calculate Copper Thickness in PCB?

The thickness of copper in PCB can be calculated by the following methods:

1. Calculation of copper plating thickness by current density and plating time:

Plating thickness (um) = current density (ASF) x plating time (min) x plating efficiency × 0.0202‌. This formula takes into account the amount of electricity, equivalent, molar mass, density and other factors. The specific calculation process involves the product of current density, plating time and plating efficiency, then multiplying by a factor 0.0202‌.

2. Thickness calculated by weight of copper foil:

In the common option “copper-covered FR4, single-sided,1 oz”,1 oz indicates the thickness of the copper foil. 1 oz = 28.35 g/ft², copper foil density of 8.93 g/cm³, 1 square foot = 929.03 cm². Thus, 1 oz copper foil thickness = 28.35/8.93/929.03 ≈ 35um or 1.35mil ‌. Common PCB thicknesses include 1/2Oz = 17.5um, 1 oz = 35um, 2oz = 70um, and 3 oz = 105um.

How to Calculate Copper Thickness in PCB?

In addition to these two methods, you can also use our online pcb copper thickness calculator to calculate the copper thickness.

online pcb copper thickness calculator

Copper Foil PCB Manufacturers

Many trusted copper foil PCB manufacturers serve global markets. Some of the top names include:

1. Isola Group: Known for high-frequency and low-loss materials.

2. Kingboard: One of the world’s biggest copper clad laminate suppliers.

3. Ventec International: Offers low-profile copper foils and thermal substrates.

4. Mitsui Mining & Smelting: A top name in RTF and ultra-smooth foils.

5. Best Technology: Based in Asia, with 18+ years in the industry. We supply high-quality copper foil PCBs, from 0.5 oz to over 6 oz.

At Best Technology, we bring over 18 years of hands-on experience. We support standard and custom copper weights, including heavy copper for high-current boards. Our RTF and HTE options fit both signal-sensitive and power-heavy needs.

With fast lead times, in-house testing, and global delivery, we’re more than just a PCB maker. We’re your reliable partner for copper foil PCB solutions. Reach out today to explore your next project with confidence.

You may also like

Fast turn PCB Board, Fast Turn Circuit Board Manufacturing
星期一, 14 4 月, 2025

What Is a Fast Turn PCB Board?

A fast turn PCB board is a printed circuit board manufactured and delivered in a short time, typically within 24 to 72 hours. These quick deliveries help speed up product development, especially during prototyping and pre-production stages. It’s a solution many engineers rely on when time is tight.

Engineers use fast turn PCBs for product validation. They want to see if a new circuit design performs well before moving to mass production. So, getting a board in days instead of weeks can make a huge difference.

Fast turn PCB Board, Fast Turn Circuit Board Manufacturing

What Are the Benefits of Fast Turn PCB Orders?

Ordering a fast turn PCB board brings several advantages to the table.

First, it speeds up your product timeline. You don’t need to wait weeks to test your circuit. If changes are needed, you can get a revised board quickly and keep things moving forward.

Second, it helps reduce project risks. The faster you test, the faster you detect potential design errors. Early detection saves money and prevents delays.

Third, it improves decision-making. With working samples in hand, your team can test real performance. It’s better than guessing or using simulation data only.

Lastly, fast turn options give your company a competitive edge. Getting to market faster often means better sales and stronger customer trust.

Best Technology’s Typical Turnaround Time for Fast Turn PCBs

At Best Technology, we understand the value of time. That’s why we’ve optimized our process to support urgent PCB orders.

For standard 2-layer fast turn PCBs, we usually deliver in 24 to 48 hours. For 4-layer boards, it may take 48 to 72 hours depending on complexity. Our team works around the clock to meet those deadlines.

Even for more complex boards — such as HDI or metal-core PCBs — we still maintain one of the quickest turnaround times in the industry. And we don’t compromise on quality. Each board goes through full inspection and electrical testing before it reaches you. The detailed turnaround time is:

Prototype(<1m²) Layers   Normal Service   Expedited Service
      FR4 PCB1 Layer3-4 days24 hours
2 Layers4-6 days24 hours
4 Layers8-10 days48 hours
6 Layers8-10 days72 hours
8 Layers10~14 days72-96 hours
10 Layers14-18 days72-96 hours
HDI (1+N+1 2+N+2)2.5 – 3.5weeksTBD (depend on design)

We don’t just print boards fast. We manage the process with strict planning, from materials to delivery. That’s why so many clients come back to us for every new project.

Factors That Affect the Turnaround Time of Prototypes

Even though we push for speed, several factors can influence how long a fast turn circuit board takes to produce. Knowing these helps avoid delays.

  • Circuit Board Design and Test Procedures

The design stage impacts everything. A simple, well-structured layout speeds up processing. Complex routing, fine-pitch components, or tight spacing can add extra review time.

Test procedures matter too. If a special test is needed, like impedance control or functional test setup, it adds to the schedule. Providing clear instructions in advance helps us prepare and avoid delays.

  • Lamination Cycles

For multilayer boards, each lamination cycle takes time. A 4-layer multi-layer board needs one cycle, while an 8-layer may need several. More layers mean longer pressing times and more careful control.

Quick builds still go through these steps. We just start immediately and plan shifts to manage it faster. That’s why sharing the full stack-up early is so important.

  • Via-in-Pad Plated Over

Via-in-pad designs are helpful for high-density layouts. But they add a few extra steps in production. We need to drill, plate, and fill those vias carefully. After that, we cap and flatten them before plating the surface.

This extra effort adds time compared to standard vias. If your board uses VIPPO, it’s best to let us know upfront so we can fast-track these processes.

  • Fabrication Drawing Specifications

Precise drawings help avoid back-and-forth communication. If drawings are unclear or missing details like dimensions, tolerances, or hole types, we’ll need to clarify before production.

Clear drawings lead to fast fabrication. They also reduce the risk of mistakes. That’s why we suggest using IPC-2581 or Gerber X2 format with notes included.

  • Surface Finish

Surface finish choice also plays a role. ENIG, OSP, HASL, or hard gold all have different process times. For example, ENIG takes longer than HASL because it involves two plating steps.

If speed matters most, we can recommend the best finish based on your needs. Some finishes can still meet performance goals while shaving off hours from the process.

  • Assembly Drawings and Notes

If you also need PCB assembly, complete documentation is key. Missing part placements, unclear polarity marks, or unreferenced BOM items slow everything down.

Providing all files in one go—BOM, pick and place, centroid file, and notes—helps avoid delays. When everything’s ready, our SMT line can move fast and precise.

Fast Turn Circuit Board Manufacturing

Manufacturing a fast turn circuit board isn’t about rushing. It’s about knowing how to work smart, reduce waste, and prevent rework.

At Best Technology, we keep a reserve stock of core materials and prepreg. That way, we can start production immediately without waiting for supply.

We also use automatic routing, inline AOI, and robotic drilling machines to keep operations smooth. Our teams work in shifts, so production doesn’t stop, even at night or on holidays.

Every department is synchronized. CAM engineers review your files fast, material control prepares the stack-up, and QA teams check every step. That’s how we manage fast output without losing accuracy.

We also run a parallel system for urgent jobs. These special jobs go into our “fast-lane” line, separated from standard orders. This ensures time-sensitive boards don’t get stuck behind large-volume orders.

Why Should You Choose Best Technology as Your Preferred Partner?

Choosing a fast turn PCB partner isn’t just about delivery speed. It’s about trust, communication, and consistent results. Best Technology stands out because we offer more than just fast service.

  • Experienced team: We’ve been in this field for over 18 years. Our engineers know what works and how to prevent problems early.
  • Clear communication: Our team responds quickly. We give you updates, clarify questions, and solve problems before they become delays.
  • Flexible production: Whether you need 1 board or 10,000, we scale easily. We also support special needs like rigid-flex, metal core, or ceramic boards with fast turn options.
  • Global shipping: We work with trusted logistics partners. Boards reach you safely and on time, even across borders.
  • Reliable quality: Every board goes through full inspection, AOI, flying probe, and E-test. Even fast jobs go through our strict quality checks.

When you work with Best Technology, you get speed, support, and security in every step. That’s why companies in medical, industrial, and automotive industries continue to rely on us.

You may also like

PCB Fabrication Manufacturer, Prototype, Design and Assembly
星期五, 11 4 月, 2025

Best Technology is your trusted partner for comprehensive PCB solutions — from initial concept to final product. With over 18 years of experience, we offer one-stop services that cover the full PCB lifecycle, ensuring high quality, fast turnaround, and competitive pricing. Why customers prefer us:

  • Free DFM/DFA check
  • Free Design Guideline
  • 25,000m2 production capacity
  • 2 Hours quick response
  • Quote within 12 hours
  • Online support 24/7
  • Transparent order tracking from first day to final delivery
  • Military-grade quality boards with strict testing and IPC standards
  • One-stop services from layout to turnkey assembly
  • Engineering support to optimize your design for performance and cost
  • Global delivery and localized service teams
  • Reliable fabrication with IPC Class 2/3 standards
  • ISO13485, ISO9001, AS9100D, IATF16949 certificated

Whether you’re a startup building your first prototype or a large OEM scaling up production, Best Technology is your reliable PCB partner.

PCB Fabrication Manufacturer, Prototype, Design and Assembly

Our Core Services – From Design to Assembly

We provide a wide range of services to support your project at every stage:

  • PCB Design & DFM Check – We don’t just manufacture—we help you build better boards. Send us your layout or concept, and our senior engineers will review your files for manufacturability, improving your design before it hits the production line.
  • PCB Fabrication – Single-layer, multi-layer, HDI, aluminum-based, or ceramic—we fabricate PCBs of all complexities. Our in-house plant supports quick turnarounds and strict quality control for every batch.
  • PCB Prototype – Need your prototype in 24–72 hours? We’ve got your back. Ideal for engineers in the development phase, we offer fast PCB prototyping with full traceability, fly-probe testing, and surface finish options.
  • PCB Assembly – Our turnkey PCB assembly service covers everything from component sourcing, SMT/DIP soldering, to functional testing. You send us your BOM and Gerber—we handle the rest.
  • Components Sourcing – Reliable sourcing of original, competitive prices, traceable electronic components.
  • IC Programming – Pre-programming and testing of integrated circuits to streamline your assembly process.

What PCB Types Does Best Technology Manufactured?

We are capable of manufacturing a wide variety of PCB types, including but not limited to:

  • FR4 PCBs (high speed PCB, IC substrate, high TG PCB, extra thin PCB, our special semi-rigid flex PCB and so on.)
  • Metal Core MCPCBs (aluminum based PCB, copper clad PCB, sinkpad PCB, thermoelectric copper separate PCB)
  • Ceramic PCBs (AlN, BeO, Al₂O₃, Zro2)
  • Flexible and Rigid-Flex PCBs, FFC, Dual access PCB
  • HDI PCBs
  • High-Frequency PCBs
  • Heavy Copper PCBs
  • Busbar PCBs
  • Hybrid Substrate PCBs
PCB Fabrication Manufacturer, Prototype, Design and Assembly

Whether you need high-reliability boards for aerospace, thermally conductive boards for LEDs, or RF boards for communication devices, we have the capability to deliver.

PCB Prototype Lead Time

We understand how crucial speed is in product development. Our standard PCB prototype lead time is:

  • Single-layer & double-layer PCBs: as fast as 24 hours
  • 4-layer PCBs: typically 48–72 hours
  • 6-layer or above: around 3–5 working days, depending on complexity

Below is a detailed prototype lead time sheet at Best Technology, the expedited options are available to meet urgent project deadlines.

Prototype(<1m²) Layers   Normal Service   Expedited Service
      FR4 PCB1 Layer3-4 days24 hours
2 Layers4-6 days24 hours
4 Layers8-10 days48 hours
6 Layers8-10 days72 hours
8 Layers10~14 days72-96 hours
10 Layers14-18 days72-96 hours
HDI (1+N+1 2+N+2)2.5 – 3.5weeksTBD (depend on design)

Best Technology’s PCB Assembly Capabilities

And as a one-stop service provider to customers, we offer PCB assembly service as well, such as:

  • SMT (Surface-Mount Technology)
  • DIP (Dual In-line Package)
  • Reflow Soldering (for SMD components)
  • Wave Soldering (for DIP components)
  • Hand Soldering (connectors, through hole components)
  • Mixed Assembly Technologies
  • Wire Harness Assembly
  • PCBA Testing
  • Box Building Assembly
PCB Fabrication Manufacturer, Prototype, Design and Assembly

How to Work with us – From File to Finished Board?

Step 1: Upload Your Files

Submit your Gerber, BOM, or PCB design files via our secure portal. We support various formats and guarantee file confidentiality.

Step 2: Engineering Review & Instant Quote

Our team performs a DFM check and confirms design compatibility. You’ll receive a quote and estimated lead time within 2 hours.

Step 3: PCB Fabrication & Parts Procurement

We begin board production and source parts simultaneously through authorized channels like Mouser, DigiKey, and Arrow.

Step 4: SMT/DIP Assembly & Testing

Boards are assembled in our SMT lines with 3D AOI, X-ray, and functional testing to ensure performance and soldering quality.

Step 5: Secure Packaging & Global Shipping

We pack your PCBs using anti-static materials and ship via DHL, FedEx, or your chosen method. Worldwide delivery in 3–5 days.

Custom PCB Board Quote

Not sure about all your PCB specs? No problem — we’re here to help.

Request a custom PCB board quotation if your project includes any of the following advanced requirements:

  • Controlled Impedance
  • Via Filling or Plugging
  • Blind or Buried Vias
  • Heavy Copper (≥ 2oz)
  • Controlled Dielectric Thickness
  • Edge Plating
  • CPK Requirements

Simply share what you do know — our engineering team will review your files and guide you through the rest.

FAQs

Q1: What file formats do you support?

Gerber (RS-274X), BOM (Excel), Centroid files, Pick & Place, Altium, Eagle, and PDF for reference.

Q2: Can I order just a few prototype boards?

Yes, our minimum order starts from 1 piece for PCB prototypes.

Q3: Do you provide components?

Yes! We offer full turnkey assembly, including sourcing components from trusted suppliers.

Q4: How do you ensure quality?

Every board is electrically tested (flying probe/fixture), and assembly passes AOI and functional testing before shipment.

Q5: Do you offer NDA for file protection?

Absolutely. We provide NDA upon request and all files are kept confidential.

You may also like

How to Design PCB Gold Fingers? PCB Gold Finger Plating Process
星期三, 9 4 月, 2025

What Is a Gold Finger in PCB?

PCB gold finger is a row of gold-plated conductive contact sheets located on the edge of the printed circuit board, named for its shape like a finger and plated with gold. It is usually used to insert the PCB into a connector or card slot for electrical connection and signal transmission. You’ll often find them on expansion cards, memory modules, and interface boards that plug into the motherboard or backplane.

These fingers act as the physical and electrical contact points between the PCB and its slot. They need to be durable, conductive and corrosion-resistant, which is why gold is used. Unlike standard wires or padding, gold fingers must withstand repeated insertion and removal, so wear resistance and high reliability are top priority in their design.

How to Design PCB Gold Fingers? PCB Gold Finger Plating Process

What Material is Gold Fingers Made of?

Gold fingers aren’t pure gold, and they don’t need to be. Instead, they are a multi-layer structure designed for performance, not cost.

At the core is copper, the base layer used in nearly all PCBs. Copper offers excellent electrical conductivity. But copper oxidizes over time, which affects signal transmission. So, a nickel barrier is added next. Nickel prevents the copper from diffusing into the top gold layer and adds hardness.

Finally, a thin layer of gold—either hard electroplated gold or soft immersion gold—is applied on top. Gold is chosen for two key reasons: it’s a great conductor and it doesn’t tarnish or corrode. This ensures long-lasting, high-performance edge connectors.

The amount and type of gold used depend on the application. Some fingers will have a thicker, harder gold layer for high-wear use. Others, used less often, may use thinner or softer gold to save on cost.

Types of PCB Gold Fingers

1. Standard PCB Gold Fingers – The most common PCB gold fingers, with horizontal and even arrays. PCB pads have the same length, width and space. This type of gold finger is easy to make.

How to Design PCB Gold Fingers? PCB Gold Finger Plating Process

2. Uneven PCB Gold Fingers – PCB pads have the same width but different lengths and sometimes different spaces like below image showing. For some PCBs, the gold fingers are designed to be shorter than others. The most relevant example of such PCBs is a PCB for a memory card reader, where the device connected to the long finger must first power the device connected to the shorter finger.

How to Design PCB Gold Fingers? PCB Gold Finger Plating Process

3. Segmented PCB Gold Fingers – PCB pads have different lengths, and the gold fingers are segmented. Segmented gold fingers vary in length, and some of them are also disjointed within the same finger of the same PCB. Such PCBs are suitable for waterproof and rugged electronics.

How to Design PCB Gold Fingers? PCB Gold Finger Plating Process

PCB Gold Fingers Manufacture Technical

Not all gold fingers are made using the same process. The method and material used for gold plating affect the performance, durability, and cost of the final product. Let’s take a closer look at the most common types.

Electroless Nickel Immersion Gold (ENIG)

ENIG is a chemical process used to deposit a thin, even layer of gold over a nickel base. It’s not applied using electricity, so it creates a smooth, flat surface. ENIG is known for its excellent surface planarity and is commonly used for surface mount pads. But in gold fingers, it’s less common unless the board will be inserted only a few times. ENIG produces softer gold, which means the plating wears off faster with repeated use.

Electroplated Hard Gold

This is the most popular choice for gold fingers PCB applications. Electroplating uses an electric current to apply a thicker and harder layer of gold, its gold thickness can be up to 50u’’. Hard gold plating usually includes small amounts of cobalt or nickel, which makes the gold layer more rigid. This helps it resist abrasion during multiple insertions into card-edge connectors.

Electroplated hard gold is a bit more expensive than ENIG but lasts longer and offers better performance for edge connectors.

Edge Beveling

Edge beveling isn’t a type of plating but an additional mechanical step. It involves cutting or grinding the PCB edge at an angle, typically 30° or 45°, to make insertion into connectors smoother.

Beveled edges help prevent damage to both the PCB and the mating socket. It also reduces insertion force, minimizing wear and tear. While beveling isn’t mandatory, it’s often recommended when the board will be inserted and removed multiple times.

Gold Fingers vs. Edge Connectors

“Gold fingers” and “edge connectors” are both terms used in PCB design, but they refer to slightly different concepts. Gold fingers are part of the PCB, while edge connectors are part of the device that receives the PCB. Gold fingers are the gold-plated pads at the board’s edge. They’re designed to slide into the slot of an edge connector. The connector itself is usually mounted on a motherboard or backplane, holding the PCB in place and ensuring a stable electrical link.

FeatureGold FingersEdge Connectors
DefinitionGold-plated contact pads on the edge of a PCBSocket or slot that receives the PCB
LocationPart of the PCB itselfMounted on a motherboard or host board
FunctionTransmit signals and power from PCB to systemProvide physical and electrical connection
MaterialCopper + nickel + gold platingUsually plastic body with internal metal contacts
DurabilityDepends on gold thickness and use frequencyBuilt to withstand repeated insertions/removals
Customization  Length, width, plating, beveling can be customizedUsually standard depending on slot type
Common UseRAM sticks, GPU boards, industrial control boardsMotherboards, expansion slots, backplanes
Design ConsiderationNeeds precise layout, spacing, and gold platingMust match PCB layout and dimensions

Benefits of Designing Gold Fingers at the Edge of PCB

  1. Gold fingers allow boards to be plugged directly into other systems without the need for extra connectors, makes design simpler and install faster.
  2. Gold is highly conductive, so the signals and power of devices enable to pass efficiently through the interface. They are often used in high-frequency or high-speed data applications.
  3. Gold does not oxidize or corrode. Even in moist or harsh environments, it maintains its performance over time.
  4. Hard gold plating can handle thousands of insertions without degrading. That’s why it’s ideal for modular designs or devices that get frequently unplugged.
  5. Gold fingers reduce the need for bulky connectors, allowing for more compact PCB designs—especially valuable in smartphones, wearables, and compact industrial modules.

How Thick Is a PCB Gold Finger?

The gold thickness on fingers typically ranges from 3 to 50u’’, depending on how the PCB will be used. For commercial and industrial use, the standard is usually 30u’’ of hard gold over 100–150u’’ of nickel.

  • 3–10u’’: Suitable for low-cost applications with minimal wear.
  • 15–30u’’: Common for most consumer electronics and industrial devices.
  • 45–50u’’: Used in military or high-end industrial equipment that needs maximum durability.

PCB Gold Finger Plating Process

The hard gold plating process for PCB gold fingers involves several precise and carefully controlled steps. Here’s how it’s done:

1) Apply Blue Protective Mask

All areas of the PCB surface except the gold finger pads are covered with a blue protective mask. This ensures that only the contact pads receive hard gold plating. The conductive areas are aligned consistently with the board’s orientation to maintain plating accuracy.

2) Remove Oxide Layer from Copper Pads

Next, the oxidation layer on the copper surface of the gold finger pads is removed. We use sulfuric acid for this step, followed by a water rinse. Then, the surface is mechanically scrubbed to ensure it’s fully clean. After that, we rinse the surface again using water and deionized water to eliminate any residues.

3) Electroplate Nickel onto Copper Pads

A nickel layer is then electroplated onto the clean copper surface of the gold finger pads. This layer serves as a barrier and bonding surface for the gold. After plating, the surface is thoroughly rinsed again with water and deionized water to remove any remaining nickel solution.

4) Electroplate Hard Gold over Nickel

Now comes the hard gold plating step. A layer of gold is electroplated onto the nickel-coated pads. This provides durability, conductivity, and wear resistance. Any unused gold solution is recovered for reuse. Finally, the plated area is cleaned again—first with water, then with deionized water—to ensure a spotless surface.

5) Remove Blue Mask

With the hard gold plating complete, the blue protective mask is removed. The PCB is then ready to move forward in the manufacturing process, beginning with the solder mask printing step.

Design for Manufacturability (DFM) of PCB Gold Fingers

1. Beveling Design for Gold Fingers

  • The safe distance between the gold fingers and the PCB outline edge must be considered. This depends on the final board thickness and the bevel angle. Common bevel angles are 45o.
  • If the gold fingers are too close to the board edge, copper may be exposed during beveling. To avoid this, copper should be trimmed based on specific parameters as below. However, if you do not want to shorten the gold fingers, increase the safety distance between them and the board edge as per the recommended values.
Bevel AngleBoard Thickness (mm)Remaining Thickness (mm)Beveling Depth (mm)
  20o1.60.51.51
3.00.651.85
2.50.72.47
    30o1.00.50.44
1.20.50.60
1.60.50.95
2.00.651.16
2.50.71.56
    45o1.00.50.25
1.20.50.35
1.60.50.55
2.00.650.68
2.50.70.9

2. Solder Mask Opening Design

  • To ensure easy insertion into connectors, no solder mask should be applied over the gold finger area. Full openings must be designed here. If the area is not fully opened, solder mask ink between gold fingers can peel off after repeated insertion/removal, which may affect contact reliability.
  • Gold finger and tin finger areas must have solder mask openings that extend approximately 10 mil beyond the board edge.
  • The solder mask opening should be 4 mil larger than the trace on each side. Make sure that the distance between the opening and surrounding copper is safe to prevent exposed copper. If copper is exposed, it must be removed (etched).
  • No solder mask opening is allowed for vias within 2 mm of the gold finger area.

3. Copper Pour Design on the Signal Layer

To support smoother insertion, avoid copper pour (flooding) in the gold finger region on the outer layers. If multiple fingers share the same net and copper is poured, they might be joined into a single pad, which affects mechanical separation and may interfere with insertion/removal.

How to Design PCB Gold Fingers? PCB Gold Finger Plating Process

4. Uneven Gold Fingers

  • For uneven gold fingers, the main trace should be 40mils, and the auxiliary trace should be 20mils. The connecting point should be 6mils, and the distance between the pad and the 20mil auxiliary trace should be 8mils. After adding the staggered traces, the main trace should be shifted to maintain an 8mil spacing from the long finger pad.
  • When the main trace enters the board, it should be connected using a diagonal line. If there’s a large groove beside the finger, the trace should be curved, not angled.

How Are PCB Gold Fingers Used?

Gold fingers are found in a wide variety of applications across many industries:

  • Computers: RAM modules, GPUs, and expansion cards all use gold fingers to connect to the motherboard.
  • Consumer Electronics: Devices like game consoles, smart TVs, and wearables use gold fingers for modular connections.
  • Medical Devices: Equipment requiring high reliability often includes gold fingers for secure signal transfer.
  • Industrial Automation: Boards that plug into PLCs or backplanes use gold fingers to keep connections stable in harsh environments.
  • Aerospace and Defense: Mission-critical systems rely on hard gold fingers for consistent performance and durability.

FAQs

1. What’s the Ideal Thickness for PCB Gold Fingers?

    Most designs use 30μin of hard gold.

    2. Are Gold Fingers Always Beveled?

    Not always, but beveling helps reduce insertion wear. It’s recommended if the board is plugged in and out often.

    3. How Do I Know If I Need ENIG or Hard Gold?

    Use ENIG for light-use connectors or where solderability matters. Go for hard gold when durability and frequent insertions are key.

    4. How Much Does PCB Gold Fingers Cost?

    PCB gold fingers cost depends on gold thickness, finger length, and quantity. Thicker gold and more fingers increase cost, but also improve lifespan. Contact Best Technology to get a quotation.

    5. Can Gold Fingers Be Repaired?

    Usually, no. Once worn or damaged, the board often needs to be replaced.

    You may also like

    What is the Meaning of PCBA? PCBA Process
    星期二, 8 4 月, 2025

    What Does the PCBA Stand For?

    PCBA stands for Printed Circuit Board Assembly.

    It’s a complete board where all parts are mounted and ready to work. The bare board itself is called a PCB. But once components like resistors, capacitors, and chips are soldered onto it, it becomes a PCBA. Sometimes, some electronic accessories will be soldered onto the PCB surface as well.

    What is the Meaning of PCBA? PCBA Process

    Key Components in PCBA

    The value of a PCBA comes from the components it carries. Each part plays a role in how the circuit works. Let’s go over some of the most common parts:

    • Resistors: Control the flow of current.
    • Capacitors: Store and release energy when needed.
    • Inductors: Manage signals, especially in filters.
    • Diodes: Let current flow in one direction only.
    • Transistors: Switch or amplify signals.
    • ICs (Integrated Circuits): Small chips with many tiny parts inside. They perform complex functions.
    • Connectors: Help connect the board with other systems.
    • Transformers: Change voltage levels for safer or better operation.
    What is the Meaning of PCBA? PCBA Process

    All these parts must be carefully chosen and placed. A small mistake can stop the board from working right. That’s why design and assembly matter so much.

    Types of PCBA Assembly Techniques

    1. Surface Mount Technology (SMT)

    This is the most common method today. Components are placed directly on the surface of the board. Pick and place machines handle most of the work, which keeps it fast and accurate. SMT supports miniaturized parts and high-speed production.

    2. Through-Hole Technology (THT)

    This technique uses components with leads that go through holes in the PCB. These leads are soldered on the other side. THT is strong and used for large or high-stress parts like connectors or transformers.

    3. Mixed Technology Assembly

    Some boards use both SMT and THT. Surface-mount parts go on first, then through-hole components are added by manually. This mix allows for flexible, compact, and reliable designs.

    What is the difference in PCB and PCBA?

    Though the terms PCB and PCBA are often used together, they describe very different stages in the electronics manufacturing process. And you must to know: PCB are one of important part of PCBA, but PCBA not. Below we listing the key differences between them:

    FactorPCBPCBA
    StageBlank boardAssembled with components
    ComponentsNoYES
    FunctionalityNon-functionalFully operational
    Manufacturing CostLowHigher (because include the components cost)
    TestingBasic inspectionComplete electrical testing
    Assembly TechniquesNot applicableSMT, THT, or hybrid
    Files NeededGerber, drill filesGerber, BOM, pick & place, assembly files
    Lead Time (under same design)ShortRelated longer than PCB

    What Is the Use of PCBA?

    PCBAs are used in almost everything you see around:

    • Phones: Control your screen, camera, and sound.
    • Computers: Process data, run programs.
    • Vehicles: Support GPS, safety features, engine control.
    • Medical devices: Power equipment like MRI or ECG machines.
    • Home appliances: From smart TVs to microwave ovens.

    Without a PCBA, none of these would work. It’s like the brain of any electronic device. From simple tools to high-end gadgets, PCBA plays a big role.

    How to Do PCBA Testing?

    Testing makes sure the board works as expected. It helps catch issues before the board goes into the final product. There are several ways to test a PCBA:

    1. Visual Inspection

    This is the first step. Technicians or machines check if parts are in the right place. They also look for bad solder joints, cracks, or missing items.

    2. Automated Optical Inspection (AOI)

    AOI mainly uses a camera system scans the board. It checks for incorrect or misaligned parts. It’s faster than manual inspection and works well for large batches.

    3. In-Circuit Testing (ICT)

    ICT checks each component directly. It makes sure resistors, capacitors, and connections work properly.

    4. Functional Testing

    This test powers the board and simulates how it will be used. It checks whether the PCBA can perform the expected tasks.

    5. X-Ray Inspection

    Used when components are hard to see, like BGAs (Ball Grid Arrays). The X-ray looks through the board to catch hidden problems.

    6. Flying Probe Test

    For small batches, probes test different points without a custom fixture. It’s flexible and cost-effective.

    7. Testing with jig

    This is used for mass production, jig tools are made according to the design files, so it is a customized. Jig testing can save much time compared with flying probe.

    Best Technology deeply know the importance of the product quality, so we pay more attention to the PCB board quality checking process. We set a QC department according to ISO9001:2015 and ensure all processes are compliance with quality system.

    How Do You Clean a PCBA?

    During the PCB assembly process, cleaning a PCBA is an important step, especially after soldering. Residual flux, dust, or moisture can affect the performance of the board. Nowadays, the common cleaning methods used in Best Technology are:

    1. Manual Cleaning

    This is the most basic method. A technician uses a soft anti-static brush and high-purity isopropyl alcohol to remove visible flux or dirt. It’s ideal for prototypes, small batches, or after rework or repair. Manual cleaning gives the operator control, especially in tight or delicate areas. However, it’s time-consuming and not suitable for large-scale production.

    What is the Meaning of PCBA? PCBA Process

    2. Ultrasonic Cleaning

    Ultrasonic cleaning is widely used for complex boards and mass production. The PCBA is submerged in a tank filled with a cleaning solution. High-frequency sound waves pass through the liquid, creating microscopic bubbles. These bubbles collapse rapidly, producing a scrubbing action known as cavitation.

    This technique reaches tiny gaps under components where brushes can’t go. It’s very effective for removing dried flux, fine dust, or ionic contamination. The process is gentle on components but powerful enough to clean even the most compact assemblies. After cleaning, the board is rinsed and dried with warm air or placed in a drying chamber.

    What is the Meaning of PCBA? PCBA Process

    3. Dry Ice Cleaning

    Dry ice cleaning is a newer, eco-friendly technique. It uses solid CO₂ pellets, also called dry ice, blasted at high speed onto the PCBA surface. As the pellets hit, they turn into gas instantly. This process lifts off dirt, flux, and even adhesives without leaving moisture or residue behind.

    What is the Meaning of PCBA? PCBA Process

    Dry ice cleaning works well for delicate electronics and is especially useful in industries where cleanliness must meet strict standards. To give customer a highest quality of the PCBA, our SMT factory equipped with the dry ice cleaning machine to ensure a clear surface while improve the efficiency.

    PCBA Assembly Process

    The PCBA assembly process is relatively simple than PCB manufacturing, actually the most tedious step is to load all the components on the pick and place machine, and set the program parameters. Here we break down all the processes of the mass production PCB assembly, from the solder paste printing to function testing.

    1. Solder Paste Printing

    First, solder paste is applied to the bare PCB. This paste is mainly consists of silver and tin, a mix of tiny solder particles and flux. A stencil is placed over the board, and the paste is spread across it using a squeegee. The paste sticks only to the exposed pads where components will be mounted.

    2. Load components feeder

    Load all the components in the feeder of the pick and place machines, make sure all the parameter of components are correct, and double check the direction of chips. It is a simple but tedious step and need much time to check everything is okay. 

    2. Pick and Place

    After applying solder paste, automated pick-and-place machines begin placing surface-mount components onto the board. These machines work fast and accurately. They follow a file created during PCB design that tells them the exact location for each part. The components sit on the solder paste, which holds them in place temporarily.

    3. Reflow Soldering

    Next, the assembled board goes through a reflow oven. The oven slowly heats the board in stages. When it reaches a high enough temperature, the solder paste melts and forms strong electrical and mechanical connections between the parts and the board. After this, the board cools down, and the solder solidifies.

    This step is only for SMT components. If the board has only through-hole parts, this step may be skipped.

    4. Inspection (AOI and Visual)

    Once the soldering is done, the board goes through inspection. Automatic Optical Inspection (AOI) machines scan the board using high-resolution cameras. They check for misaligned parts, soldering problems, or missing components. For small production or sensitive areas, manual inspection is also performed to catch anything machines might miss.

    5. Through-Hole Component Insertion (If Needed)

    If the board uses through-hole technology (THT), this is when those parts are added. Workers or machines insert the components into the holes, and the leads go through to the other side of the board. These components are often bulkier, like connectors or transformers.

    6. Wave Soldering (For THT)

    For boards with many through-hole parts, wave soldering is used. The board passes over a wave of molten solder that touches the underside. This solders all the leads at once. It’s fast and effective, especially for high-volume production. For small-scale or sensitive boards, hand soldering might be used instead.

    7. Final Inspection and Quality Control

    After soldering, the entire board is checked again. Technicians or AOI machines inspect the final assembly. They look for cold joints, excess solder, or misplaced parts. Boards may also be tested with X-ray machines to inspect solder joints under BGAs or hidden areas.

    8. Functional Testing (FCT)

    The next step is functional testing. The board is powered up and tested to make sure it works correctly. This could include checking voltages, signals, response times, and communication with other devices. Engineers may use test jigs or test programs based on the end application.

    9. Cleaning (If Needed)

    After all soldering and testing, the board might be cleaned to remove flux residue. Depending on the flux used, this could be manual, ultrasonic, or dry ice cleaning. Clean boards are especially important in high-reliability fields like aerospace, automotive, or medical.

    10. Conformal Coating or Protection (Optional)

    For some applications, a conformal coating is applied. This is a protective layer that shields the board from moisture, dust, and chemicals. It’s often used in harsh environments. Coating can be applied by spraying, dipping, or brushing.

    11. Packaging and Shipping

    Finally, once the PCBA passes all checks, it’s packed carefully. Anti-static bags, foam, and trays protect it during transport. Labels are added for tracking and traceability. From here, it’s ready to be installed into the final product. Here is a whole process of pcb assembly in Best Technology.

    PCBA HS Code

    Every product for trade needs a code. The HS code for PCBA usually is 8517799000

    But depending on the use or market, some customs may use a different classification. For example:

    853400 for bare board parts, sometimes be used on certain assembled parts.

    847330 for boards used in computers.

    853710 for board which used as controller or controller unit.

    Noted: Always check with your country’s customs for the right code. Using the wrong one may cause delays or extra costs.

    Our PCBA Services

    At Best Technology, we specialize in end-to-end PCBA services. From design to delivery, we support your project with speed, quality, and reliability. We can be your first choice because:

    1. We have 18+ years in PCB industry
    2. One-Stop Service: PCB fabrication, parts sourcing, SMT/THT assembly, testing
    3. Custom Solutions: From prototypes to mass production, no MOQ
    4. Skilled Engineers: For DFM & DFA checks and process optimization
    5. Strict Quality Control: 9-times QC check, including AOI, X-ray, ICT, and functional testing
    6. Global Delivery: Fast and on time, wherever you are
    7. Component Sourcing: Only original, trusted parts, we have cooperated with digikey, findchips, mouser for over 10 years, and we can get the most competitive price from them.
    8. PCB Fabrication: Rigid, flex, metal-core, ceramic, and more.

    Whether you’re working on a simple control board or a multi-layer high-speed system, we’re here to support you.

    You may also like