pcb
Home > Blog

Archive for the ‘UVC Ceramic pcb’ Category

How is the ceramic PCB made?
Friday, August 9th, 2024

Ceramic PCB is composed of ceramic substrate, connecting layer and circuit layer. With the development of electronic industry, the types of ceramic PCB have become various. Since ceramic materials were used as PCB substrate, many methods for manufacturing circuit layer on ceramic substrate have been developed, among which several common ceramic circuit boards are HTCC (high temperature co-firing), LTCC (low temperature co-firing), DBC (direct copper cladding) and DPC (direct copper plating). Each type of ceramic circuit board has different usage scenarios, and also corresponds to different manufacturing processes.

How is the ceramic pcb made by HTCC process? ‌

First of all, the starting material of HTCC (high temperature co-fired ceramics) process is ceramic powder (such as Al2O3 or AlN), and these materials need to be mixed with organic binder to form paste ceramic slurry. Then, the ceramic slurry is scraped into a sheet by using a scraper, and a green embryo is formed through a drying process. After the green embryo is formed, through holes are drilled according to the circuit layer design, and then the wiring and hole filling are carried out by screen printing metal paste. Finally, the germ layers are stacked and sintered in a high temperature furnace (about 1600 C). ‌

How is the ceramic PCB made?

Specifically, the ‌HTCC process flow includes the following key steps:

Casting molding method: the ceramic slurry is scraped into a thin strip with uniform thickness, and dried by blowing filtered hot air opposite to the moving direction of the conveyor belt to form a green sheet.

Punching: Through mechanical drilling, mechanical punching or laser drilling, through holes are punched in the green blank. The size, position and accuracy of these holes directly affect the on-off and wiring density in the substrate.

Through-hole filling: the filling slurry is extruded into the through-hole of the green porcelain by mask printing method to complete the metallization process of the green porcelain.

Lamination, slicing and co-firing: the printed germ layers are laminated, then sliced and finally co-fired at high temperature. ‌

After the completion of this series of steps, a high-temperature co-fired ceramic (HTCC) substrate is obtained, which has excellent electrical and mechanical properties and is widely used in the manufacture of electronic products requiring high performance. ‌

How is the ceramic pcb made by LTCC process?

The first step is to prepare raw materials. The raw materials of ‌LTCC are mainly composed of ceramic powder and organic additives. Ceramic powders, such as alumina and zirconia, are used to improve the insulation and mechanical strength of ceramic materials. Organic additives are used to increase viscosity and improve plasticity, which is convenient for the subsequent molding process. ‌

Then there is circuit printing, the purpose of which is to print circuit patterns on ceramic substrates, usually using shielding printing technology. Firstly, the ceramic substrate is cleaned and coated with conductive metal ink. Then, the circuit pattern is transferred to the substrate by stamping with a printing die. Then, through the baking process, the conductive ink is solidified on the substrate to form a conductive circuit. ‌

How is the ceramic PCB made?

The third step is a sintering process, in which ceramic materials are chemically reacted at high temperature to combine their particles to form a compact ceramic body. In the process of sintering, the control of temperature gradient and atmosphere is very important to reduce the stress of materials and prevent them from oxidation.

In the final step of finished product inspection and subsequent treatment, the sintered ceramic substrate needs to be inspected first, including appearance quality inspection, size measurement, electrical performance test and other items. Qualified products can be subjected to subsequent electronic component packaging processes, such as welding, film covering, gas packaging, etc., to realize the protection and connection of electronic components. ‌

To sum up, the manufacturing process of ceramic PCB by ‌LTCC process involves many steps, such as precise material selection, processing, circuit printing, sintering, finished product inspection and subsequent treatment, to ensure the quality and performance of the final product.

How is the ceramic pcb made by DBC process?

The first step is the preparation of raw materials. First, it is necessary to select suitable ceramic substrate materials. Common materials include alumina (Al2O3) and aluminum nitride (AlN), which have high insulation, high thermal conductivity and good mechanical strength. The surface of the substrate should be cleaned and treated first to ensure the bonding with the subsequent copper foil. ‌‌

How is the ceramic PCB made?

Then the bonding between copper foil and ceramic substrate is the core step of DBC manufacturing process. At a certain temperature and pressure, the copper foil is closely attached to the ceramic substrate to form a firm bonding interface. It is necessary to control the parameters such as temperature, pressure and time in the bonding process to ensure the bonding quality and performance. ‌

Secondly, after the bonding is completed, the copper foil needs to be etched to form the required circuit pattern. Chemical etching or laser etching can be used in the etching process. By precisely controlling the etching depth and width, high-precision and high-resolution circuit patterns can be obtained. ‌

Finally, the DBC structure is cleaned, dried and tested. The purpose of this is to remove residues and improve the reliability and stability of products. ‌

Through the above steps, high-performance DBC ceramic substrates can be prepared, which are widely used in the packaging of intelligent power modules and electric vehicle power modules. ‌

How is the ceramic pcb made by DPC process?

Firstly, the ceramic substrate is pretreated and cleaned to ensure the cleanliness of the substrate surface and prepare for the subsequent deposition and copper plating process. ‌

Then the key step is to deposit a Ti/Cu layer on the surface of the substrate as a seed layer by vacuum sputtering technology. This step is the most important in DPC process.

Followed by photolithography, development and etching processes, the circuit is completed.

Finally, the thickness of the circuit is increased by electroplating or electroless plating to enhance the conductivity and durability of the circuit. After the metallized circuit is manufactured, the photoresist is removed, and finally the substrate is manufactured. ‌

How is the ceramic PCB made?

The manufacturing process of ceramic PCB by DPC process involves vacuum sputtering, photolithography, development, etching and electroplating, which makes the ceramic PCB by DPC process have good conductivity and durability, and is suitable for various electronic application scenarios. ‌

With the increasing use of ceramic PCB, in order to adapt to some application fields, many different process technologies have emerged, and each process technology has its own unique technology. For example, HTCC process needs to be sintered at high temperature to achieve its goal. According to the different environment used and the production cost, the appropriate ceramic PCB production technology is selected. BEST Technology has rich experience in manufacturing ceramic circuit boards. For different kinds of ceramic PCBs, there are different production lines and professionals. If you choose the right manufacturer, you will get the best quality ceramic circuit boards.

You may also like

Leading Ceramic PCB Board Manufacturer – Best Technology
Friday, July 5th, 2024

With the gradual deepening of electronic technology in various application fields, the highly integrated circuit board has become an inevitable trend. Under this situation, the disadvantage of traditional circuit board FR-4 and CIM-3 in TC (thermal conductivity) has become a drawback to delay the development of electronic technology. Though the metal core PCBs are known for their good thermal management, they hard to meet the fast heat dissipation and miniaturization of the devices at the same time. This is why ceramic PCB stands out.

What is Ceramic PCB?

A ceramic PCB is a type of PCB made from ceramic materials, such as alumina (Al2O3), ALN (aluminum nitride), or Beryllium Oxide (BeO). These materials are prepared by using thermal conductive ceramic powder and organic adhesive under the condition of below 250℃. Ceramic powders are not easy to made, especially for aluminum nitride powder, this is one of reasons that why ALN ceramic PCB is more expensive.

There are some different methods to make ceramic PCBs, commonly in the market are thick film, DBC, DPC and thin film technology. Different types of ceramic circuit boards have its unique characteristics. May you heard about HTCC, LTCC and AMB, they are also the ways to make ceramic PCBs, but there just a few manufacturers can make. Here is a HTCC ceramic PCB that we made.

HTCC ceramic PCB

Why Ceramic PCBs are popular used?

Different from the traditional FR-4 PCB (wave fiber), ceramic PCBs have good high-frequency properties, electrical properties that organic materials can’t achieved. It is a new generation of large-scale integrated circuits and power electronics module ideal packaging materials. The main advantages of ceramic circuit board including:

  • Higher thermal conductivity
  • More matched thermal expansion coefficient (CTE)
  • Lower resistance
  • Good weldability and can be used in high temperature
  • Good insulation
  • Lower high-frequency loss
  • High density assembly available
  • No organic ingredients, resistance to cosmic rays, high reliability in aerospace
  • No oxide layer in copper layer, so it can be used for a long time in a reducing atmosphere

Who is the Best Ceramic PCB Manufacturer?

There are so many PCB manufacturers in the domestic and aboard, but reliable ceramic PCB vendors with good quality and reasonable price are very few. If you are looking for an experienced one, then keep the change. We’re the best option! Best Technology offers ceramic PCBs for our customers more than 100k every year, and we are high mixed from thick film ceramic PCB, DPC ceramic PCB, DBC/DCB ceramic PCB to AMB. Your PCBs need to use in automotives? Don’t worry, we gained IATF16949 and ISO13485 certifications, and all the manufacturing processes are strictly followed by ISO9001 quality control system. We welcome all the questions and inquiries from everyone.

Here is our ceramic PCB manufacturing capability for your reference.

Ceramic PCB Manufacturing Capability
No. ItemGeneral ParameterSpecial Process
1SubstrateHigh insulation, chemical corrosion resistance, high-temperature resistanceAl2O3Glass, quartz, sapphire, 99% , 92% Al2O3 (black)
2Excellent thermal conductivity, low thermal expansion coefficient, and high-temperature resistanceAIN
3Insulation performance and high-temperature stabilityZTA
4High strength, high hardness, high thermal conductivity, and low dielectric lossSi3N4
5ConductorTungsten(LTCC/HTCC)、Au、Au&Pd、Au&Pb、Ag、Ag&Pd、Ag&Pb
6Layer CountDPCSingle – Double sided 
7DBCSingle – Double sided 
8AMBSingle – Double sided 
9Thick filmSingle – Double sided, 4L 
10LTCCSingle – Double sided, 4L, 6L6L – 14L
11HTCCSingle – Double sided, 4L, 6L 
12Copper ThicknessInner layer/ 
13Outer layerHoz-3oz (DPC), 3oz-12oz(DBC/AMB) 
14DimensionMax. dimension130*180Larger dimension available (pass evaluation)
15Min. dimension2*2Shipped in panel
16Substrate thicknessAl2O3/AIN 0.38. 0.635, 1.0mm, Si3N4 0.25、0.32mm>1.5
17Surface Treatment
(thickness)
OSP0.2-0.5um/
18ENIG1-3u”(Au)120-320u”(Ni)/
19Immersion silver6-12u”/
20Immersion tin≥1um/
21ENEPIGAu 2u”, Pd 1U”, Ni 100u”/
22Hard gold5-30u”(Au)、120-200u”(Ni)/
23DrillMin. PTH0.05MM/
24Min. NPTH0.05MM/
25Max. aspect ratio (PTH PCB)5:1/
26NTPH tolerance±0.05/
27PTH tolerance±0.05/
28Line width/ Line spacingInner layerLine width≥0.1mm; Line space≥0.1mm0.076/0.076mm
29Outer layer1OZ; Line width≥0.12mm; Line space≥0.12mm0.1/0.1mm
302OZ;Line width≥0.2mm; Line space≥0.2mm0.15/0.15mm
313OZ;Line width≥0.25mm; Line space≥0.25mm0.2/0.2mm
324OZ;Line width≥0.35mm; Line space≥0.35mm0.3/0.3mm
335OZ;Line width≥0.45mm; Line space≥0.45mm0.4/0.4mm
346OZ;Line width≥0.55mm; Line space≥0.55mm0.5/0.5mm
35Thick film; Line width≥0.1mm; Line space≥0.1mm0.076/0.076mm
36Line width tolerance±20%/
37Solder Mask (SM) /SilkscreenConductorGlass glaze, medium, solder mask ink/
38SM colorWhite, black, greenMixed color
39Silkscreen colorWhite, blackMixed color
40Silkscreen height, widthLine width≥0.13mm; Height≥0.8mm/
41SM thickness≥20um/

You may also like

How Does the Ceramic PCB Works in IGBT Modules?
Friday, January 19th, 2024

IGBT (Insulated Gate Bipolar Transistor) is a bipolar junction transistor (BJT) with a MOS gate, or we can say that an IGBT module is a combination of BJT and MOS module. Despite its small size, the IGBT chip can control the transmission of electrical energy. It can switch the current 100,000 times within 1 second under an ultra-high voltage of 650 million volts.

What is the Working Principle of IGBT?

IGBT combines the features of a transistor and a switching circuit, making it a new type of electronic component that can control current efficiency. Its structure allows it to achieve current control from turn on to off without generating excessive leakage current, as well as not affecting the operation of other circuits.

The working principle of IGBT modules including two parts – the current control of MOS gate and BJT transistor. When the voltage of MOS gate changes, it affects the conduction of the transistor, thus controlling the flow of current. When the BJT comes into play, it controls the flow of current, so that improve the working efficiency of the IGBT.

(Working_principle_of_IGBT)

How Does A Ceramic PCB Protect IGBT Modules from Overheat?

As you know, IGBT modules have been applied for many years in various industries such as automotive, industrial, aerospace, consumer electronics, and more. However, optimizing the thermal dissipation of IGBT packaging is crucial to enable the modules to operate at higher power conditions. If heat dissipation is improved, IGBT modules can be used in more advanced applications.

You might be wondering how much heat does an IGBT module generate during running? It’s equivalent to the heat produced by 100 electric furnaces. This substantial amount of heat must be dissipated immediately from the IGBT chip, that’s why the ceramic circuit board stands out.

(Ceramic_pcb_with_DPC_technology)

In IGBT modules, ceramic PCBs are placed beneath the IGBT chip, or we can say the chip is assembled on the ceramic circuit board. The ceramic PCB connects and supports the chip, rapidly dissipating heat to the outer package. This method protects the chip from the adverse effects of heat.

Why ceramic PCBs Are Suitable for IGBT thermal dissipation?

Ceramic materials exhibit excellent thermal dissipation and electrical insulation properties. Unlike aluminum metal core PCBs, ceramic PCBs do not use insulation layers that hinder heat dissipation. In the manufacturing process of ceramic PCBs, copper foil is directly bonded to the ceramic substrate under high pressure and temperature (it depends on the different technology and different copper thickness). During PCB manufacturing, IGBT and other components are mounted on the circuit board through assembly technology.

Ceramic materials have extremely high insulation capabilities, enduring breakdown voltages up to 20KV/mm. At present, there are three ceramic materials that can be used for IGBT modules, they are 99% or 96% Alumina (Al₂O₃), Aluminum Nitride (AlN), and Silicon Nitride (Si₃N₄).

The thermal conductivity of alumina PCB is 15-35W/mK, aluminum nitride PCB is 170-230W/mK, and silicon nitride PCB is 80+W/mK. In contrast, aluminum core circuit boards only have a thermal conductivity of 1-12W/mK.

Applications of Ceramic PCBs in IGBT Packaging

Alumina PCBs are the most commonly used circuit boards in IGBT modules due to their lower cost. But if IGBT modules have higher power or precision requirements, AlN ceramic PCBs and Si3N4 PCBs are the most suitable choices. Because they have higher thermal dissipation and thermal expansion coefficients (CTE) close to semiconductors. Since different ceramic substrate has different features, the uses of ceramic PCB should depend on the specific requirements of IGBT modules.

In addition, with the development of Silicon Carbide (SiC) and Gallium Nitride (GaN) materials, they are starting to be used for IGBT chips due to their high-frequency, high-power, and high-temperature characteristics. Maybe in the future, aluminum nitride PCBs and silicon carbide PCBs will be increasingly applied to high-power IGBT modules in high-density three-dimensional packaging.

Common Properties of Using Ceramic Circuit Board

  • Excellent thermal conductivity and voltage resistance of ceramic substrates.
  • Copper trace layers has extremely high current-carrying capacity.
  • Strong adhesion and reliability between circuit layers and ceramic substrates.
  • Good soldering performance, suitable for wire bonding.
(Ceramic_PCB)

How to Solve the Overheat Issues in IGBT?

Though the ceramic PCB is good at heat dissipation, there still some overheat occasions happened if small power or long-time operation. Here we summarized some solutions for such issues.

1. Clean the heat sink to ensure tight contact between the IGBT and the heat sink.

2. Clean the fan, including the fan blades and lubricate the bearings if needed.

3. Clear the airflow path of the fan.

4. Replace with higher power IGBTs, ensuring the withstand voltage is not lower than the original IGBT’s value.

Above all are the information that we’d shared, welcome to contact us if you want to know more. Best Technology is a historic company which has over 17 years PCB manufacturing experience, here you can enjoy the one-stop ODM & OEM service, one-to-one after sales, quick delivery and high-quality products.

You may also like

Why do ceramic substrates contribute to the breakthrough of 905nm lidar technology?
Friday, September 1st, 2023

LiDAR (Light Detection And Ranging, referred to as “LiDAR”) measurement is a system that integrates three technologies: laser, GPS (Global Positioning System), and IMU (Inertial Measurement Unit, inertial measurement unit), used to obtain data and Generate accurate DEMs (Digital Elevation Models). The combination of these three technologies can highly accurately locate the spot of the laser beam on the object, and the ranging accuracy can reach the centimeter level. The biggest advantage of lidar is accurate, fast, and efficient operation.

Lidar is currently widely used in the field of driverless cars and robots. It is known as the “eye” of a generalized robot. It is an active measurement device that measures the precise distance between an object and a sensor by emitting laser light.

  As an indispensable sensor for L3 and above automatic driving, lidar has significantly improved the reliability of the automatic driving system with its excellent ranging capability, high angular resolution and sensitivity to ambient light, and has become the key to improving reliability. A key element of autonomous driving systems, but its application is constrained by cost and technical challenges.

  In the past, lidar was difficult to apply to mass-produced vehicles due to its high cost. However, recently, with the continuous evolution of technology and market competition, the cost of lidar has gradually decreased, thereby accelerating its application in the field of autonomous driving.

In this evolution process, the emergence of ceramic substrates has played a vital role in the breakthrough of lidar technology – 905nm wavelength lidar has become mainstream. Traditional materials such as FR-4 and FE-3 are difficult to meet the high heat dissipation requirements of lidar, while ceramic substrates rely on their excellent thermal conductivity. For example, the thermal conductivity of aluminum nitride ceramic substrates is as high as 200W/M.K. It effectively solves the heat dissipation problem and provides a guarantee for the stability and life of the lidar.

In lidar, the transmitter is one of the links with the highest value and the highest barriers. On the transmitter side, with the rise of China’s domestic industrial chain and the adjustment of the overall technical route of the industry, among them, 905nm VCSEL laser chips and other products have achieved breakthroughs in the market and become a hot topic in the industry.

The “heart” of the transmitter is the light source. Laser transmitter is the core component of laser technology, and its composition includes laser working medium, excitation source and resonant cavity. In this system, why choose a ceramic substrate as a component? The main reason lies in its unique advantages in heat dissipation. Especially for VCSEL (Vertical Cavity Surface Emitting Laser) chips, due to their low power conversion efficiency, the problem of heat dissipation is particularly prominent. The application of ceramic substrates has become the best choice to solve the problem of thermoelectric separation.

The ceramic substrate has excellent heat dissipation performance and can effectively conduct the heat generated inside the laser transmitter. The high thermal conductivity of the ceramic substrate allows it to efficiently conduct heat generated inside the lidar, preventing performance degradation due to overheating. In addition, ceramic materials have the advantages of high strength, hardness, thermal shock resistance, insulation, and chemical stability, which can further extend the service life of products, improve sensitivity, and enhance the response speed of lidar.

Ceramic substrates also enable high-density assembly, supporting miniaturization and integration of devices. Its stability ensures that the sensor signal is not distorted, and the matching with the thermal expansion coefficient of the chip ensures the reliability of the product in harsh environments such as high temperature, high vibration, and corrosion. In addition, the metal crystallization performance of the ceramic substrate is excellent, which ensures the stability of the circuit and further improves the quality control level of the lidar.

As a leading manufacturer of ceramic substrates, Best Technology provides a variety of ceramic substrates of different materials, including 96% alumina, 99% alumina, aluminum nitride, zirconia, silicon nitride, sapphire ceramic bases, etc. The heat dissipation properties of these different materials are different, such as aluminum nitride (AlN): thermal conductivity of 170-230 W/mK, silicon nitride (Si3N4): thermal conductivity of 20-80 W/mK, sapphire (Al2O3): thermal conductivity Coefficient 25-40W/mK.

Therefore, choosing a high-quality ceramic substrate not only helps to solve the problem of thermal and electrical separation of laser emitters, but also provides stable heat dissipation and electrical performance, providing reliable support for efficient operation and performance improvement of laser emitters. In the development of lidar technology, ceramic substrates play an increasingly important role, providing key support for performance breakthroughs and innovations in laser transmitters. We are witnessing a revolution in the auto industry brought about by China’s autonomous driving assistance systems.

If you are designing a ceramic PCB and seeking a reliable manufacturer, welcome to leave you message or contact us directly.

You may also like

Ceramic PCB is suitable for UVC-LED
Wednesday, September 8th, 2021

Due to COVID-2019, UVC-LED is becoming more and more popular.

The wavelength of UVC-LED is 100-275nm, 265 nm is the best!

Why UVC-LED is becoming more and more popular?

Because UVC-LED has a lot of advantages for sterilization.

High efficiency: The UVC segment ultraviolet light emitted by UVC-LED generally kills bacteria and viruses within a few seconds.

Extensive bactericidal effect: UVC-LED can kill a lot of bacteria.

Safety and environmental protection (without mercury): The most obvious advantage of UVC-LED devices over traditional mercury-excited ultraviolet lamps is that the germicidal light source does not contain mercury or heavy metals, and is simple to operate, safer and more reliable.

Small size, flexible design, easy installation: UVC-LED devices are small in size, and the sterilization device is flexible in design. It can be used in small spaces where traditional ultraviolet mercury lamps cannot be used. It is more in line with the future development trend of high efficiency, small size and integration.

Why ceramic PCB is suitable for UVC-LED?

Because UVC-LED is sensitive to heat.

Due to the low external quantum efficiency (EQE) of UVC-LEDs, only about 1-3% of the input power is converted into light, while the remaining 97% is basically converted into heat. If the heat cannot be dissipated in time and the LED chip is kept below its maximum operating temperature, it will directly affect the service life of the chip, and it may even be unusable.

Due to the small size of UVC-LED, most of the heat cannot be dissipated from the surface, so the back of the LED becomes the only way to effectively dissipate heat. After years of development, UVC-LED is basically based on a flip-chip solution with a high thermal conductivity aluminum nitride substrate. Aluminum nitride (AlN) PCB made by Best Technology has high thermal conductivity (thermal conductivity 180 W/(mK) ~ 260 W/(mK)), which meets the needs of high heat dissipation of UVC-LED and effectively extends the service life of UVC-LED.

Please feel free to contact sales@bestpcbs.com to know more about ceramic PCB for UVC-LED.

Ceramic PCB for UVC LED
AlN Ceramic PCB

You may also like