pcb
Home > Blog

How to create a new PCB in Altium?

December 11th, 2024

How to create a new PCB in Altium? To creating a new pcb in altium from schematic, finalize the schematic with all components and connections, then create a new PCB layout document. Arrange components in the workspace, define the board shape and layer stackup, and set design rules. Route the traces and verify the design using Altium’s Design Rule Check (DRC) to ensure it meets manufacturing and design standards.

How to create a new PCB in Altium?

Creating a new PCB in Altium mainly includes the following steps:

1. Create a new PCB file

  • To create a new file: Open the Altium software, select the “File” menu, and then click the “New” option. In the pop-up submenu, select “PCB”, so that a new blank PCB file is created. You can also use the shortcut key “Ctrl + N”, and then select “PCB Document” in the pop-up “New Document” dialog box to create it.
How to create a new PCB in Altium?

2. Set PCB parameters

  • Unit setting: Select “Document Option” in the “Design” menu. In the pop-up dialog box, you can select the unit of the PCB. Generally, there are two units to choose from: imperial (mil) and metric (mm).
  • Grid setting: Also in the “Document Options” dialog box, switch to the “Grids” tab. You can set the Visible Grid and Snap Grid. The visible grid is used as a visual reference during the design process to help users align components and wiring.
  • Define the board frame: You can use the “Line” tool or the “Keep – Out” tool in the “Place” menu to draw the border of the PCB. If you use the “Line” tool, you need to manually draw a closed polygon to represent the shape of the PCB; the area drawn with the “Keep – Out” tool indicates the range where wiring is prohibited, and can also be used as the boundary of the PCB.
  • Precisely set the size: Select “Board Shape” in the “Design” menu, and then select “Redefine Board Shape”. At this time, the mouse cursor will become a cross shape. Use the mouse to click on the previously drawn board frame lines, and the software will automatically redefine the shape and size of the PCB based on these lines.

3. Add component library

  • Open the component library panel: In the “Libraries” panel on the right, if it is not displayed, you can open it through the “Workspace Panels” option in the “View” menu, and then select “Libraries”.
  • Add library files: In the component library panel, click the “Libraries” button, and in the pop-up “Available Libraries” dialog box, select the “Install” option. Then find the required component library file in the file browser (usually *.IntLib or *.SchLib and *.PcbLib files), select and click “Open” to add the component library to the software.

4. Place components

  • Find components: After the component library is added, you can find the components that need to be placed on the PCB in the component library panel. You can quickly locate the component by entering the component name, model or package type in the search box.
  • Place components: After finding the required component, double-click the component name or click the component name and select the “Place” option. The mouse cursor will change to the shape of the component. Move the mouse to the appropriate position in the PCB editing area and click the left mouse button to place the component. During the placement process, you can rotate the component by pressing the space bar to adjust the direction of the component.

5. Component layout

  • Manual layout: After placing the component, you need to layout the component. When manually laying out, you can adjust the position of the component based on factors such as the electrical connection relationship between components, signal flow, and the mechanical structure of the PCB.
  • Automatic layout (optional): Altium also provides an automatic layout function. Select the “Component Placement” option in the “Tools” menu, and then select “Auto Place”. However, the result of automatic layout may not be ideal, and manual adjustments are usually required based on the automatic layout to achieve the best layout effect.

6. Wiring

  • Set wiring rules: Before wiring, you need to set wiring rules. Select the “Rules” option in the “Design” menu. In the pop-up “PCB Rules and Constraints Editor” dialog box, you can set various routing rules such as line width, routing spacing, and via size.
How to create a new PCB in Altium?
  • Start routing: Select the “Interactive Routing” option in the “Route” menu, or use the shortcut key “Ctrl + W”, and the mouse cursor will become a cross shape. Click a component pin as the starting point for routing, and then move the mouse to the target pin. The software will automatically generate routing according to the set routing rules. During the routing process, you can switch the routing mode by pressing the “Shift + Space” key combination, such as 45° routing, 90° routing, etc.

7. Design Verification

  • Electrical Rule Check (ERC): Select the “Design Rule Check” option in the “Tools” menu. In the pop-up “Design Rule Check” dialog box, set the items and parameters to be checked, and then click the “Run DRC” button. The software will check whether the PCB design complies with the previously set routing rules, such as whether there are short circuits, open circuits, insufficient spacing, etc., and generate a check report.
  • 3D view check (optional): Altium also provides a 3D view function, which can help users check the PCB design more intuitively. Select the “Switch to 3D” option in the “View” menu, and the software will display the PCB design in 3D.

Through the above steps, you can create a new PCB in Altium. In the actual design process, you may need to repeatedly adjust and optimize each step according to the specific design requirements and complexity to obtain a high-quality PCB design.

What is the difference between a schematic and a PCB?

The main differences between a schematic and a PCB are in terms of definition, purpose, content, and form of expression.

1. Definition and purpose

  • Schematic: A schematic is also called a circuit diagram or electrical schematic. It uses graphic symbols to represent circuit components and their connections. The schematic mainly describes the working principle of an electronic device and does not involve a specific physical layout.
How to create a new PCB in Altium?
  • PCB: A PCB diagram is a printed circuit board diagram, which is a mapping drawing of a circuit board, detailing the routing, component location, size, and connection method of the circuit board. PCB diagram is the direct basis for the actual production of circuit boards. It is mainly used to guide the manufacturing and assembly process of PCB boards to ensure that components are placed correctly and lines are connected accurately.

2. Content and form of expression

  • Schematic diagram: The schematic diagram represents components and connection lines in a symbolic form, clearly showing the working principle and logical relationship of the circuit. It does not involve specific physical layout and size, so it is relatively flexible and easy to modify and optimize.
  • PCB diagram: The PCB diagram shows the actual layout and electrical connection of components, including copper foil lines, pads and vias. PCB diagram is the basis of circuit board manufacturing, involving specific physical layout and connection methods. Once determined, the modification is more complicated.

How to make a PCB from schematic?

Making a PCB from a schematic can be divided into the following steps:

  • Drawing a schematic diagram: Use circuit design software (such as Altium Designer, Eagle, etc.) to draw a circuit schematic diagram, including the connection relationship of each electronic component.
  • Design PCB: According to the component layout and connection relationship in the schematic diagram, PCB layout design is performed in the PCB design software, including component placement, wiring, etc.
  • Generate Gerber files: Export the designed PCB files as Gerber files, which is a standard PCB manufacturing file format that contains information about each layer of the PCB, such as copper foil layer, silk screen layer, solder mask layer, etc.
  • Make PCB: Send the generated Gerber files to the PCB manufacturer or use PCB manufacturing equipment for production. The PCB manufacturer will make the actual PCB circuit board according to the Gerber file.
  • Solder components: Solder the electronic components to the manufactured PCB circuit board to complete the circuit assembly.
  • Test and debug: Test and debug the assembled circuit board to ensure that the circuit functions normally.

Can Altium open Gerber files?

Altium Designer can open Gerber files. The specific steps are as follows:

Open Altium Designer software, select “File” in the menu bar, then select “New”, and then click “Cam document” in its drop-down submenu to create a new CAM file.

How to create a new PCB in Altium?

In the newly created CAM file, select the “Import” sub-item of the “File” menu item, and then select “Gerber” to start importing Gerber files.

Select the Gerber file to be opened in the pop-up window, click “Open”, and then click the “OK” button in the pop-up “Import Gerber” window, and the Gerber file can be successfully opened.

How do I convert PCB to schematic in Altium?

To convert PCB to schematic in Altium, first open the PCB file and export the network table through the “Design” menu (select the appropriate format such as Protel format). Then create a new schematic file and import the previously exported network table through the “Design” menu. Then manually adjust the component layout to make it more reasonable, and finally check whether the connection relationship is correct and improve the schematic, add annotations and logos, etc.

How do you place components from schematic in Altium?

In Altium Designer, first make sure that the required component library has been added. If not, you can add it by opening it in the “Workspace Panels” under the “Libraries” panel menu. Click the “Libraries” button, select “Install) in the “Available Libraries” dialog box that pops up, and find the component library file (such as *.SchLib) and add it.

In the “Libraries” panel, enter keywords such as component name, model or package type in the search box to find the components to be placed. You can also expand the corresponding library folder in the library list and browse to find the components.

How to create a new PCB in Altium?

After finding the component, there are two ways to place it. One is to double-click the component name directly, and the mouse cursor will change to the shape of the component; the other is to click the component name and select the “Place” option.

Move the mouse to the schematic editing area and click the left mouse button to place the component in the appropriate position. During the placement process, you can press the space bar to rotate the component and adjust its direction. Repeat this operation and place all the required components one by one into the schematic according to the schematic design.

How to make a PCB board step by step?

  • PCB manufacturing: After receiving the file, the PCB manufacturer manufactures it according to the file information. The manufacturing process includes multiple process steps such as inner layer pattern production, lamination, outer layer pattern production, drilling, electroplating, solder mask coating and silk screen characters.
  • Component assembly: After the PCB is manufactured, the components are assembled by manual welding or automated equipment, and the electronic components are installed on the PCB board according to the requirements of the BOM and schematic diagram to complete the production of the PCB board.
  • Functional test: Use test equipment to perform functional tests on the assembled PCB board to check whether the circuit can work normally and whether it meets the design requirements.
  • Performance debugging: For some complex circuits, performance debugging may be required, such as adjusting component parameters, optimizing signal processing, etc., to improve the performance and stability of the circuit.

In short, throughout the design process, continuous adjustments and optimizations are required to ensure the performance, reliability and manufacturability of the PCB. At the same time, Altium Designer also provides many other functions and tools to help you better complete PCB design tasks.

What is a mxm pcb connector?

December 10th, 2024

What is a mxm pcb connector? The MXM PCB connector is a high-performance connector specially designed to connect mobile graphics processing units (GPUs) and PCBs. It uses a specific mechanical structure and electrical design to achieve reliable signal transmission and power supply in a small space, meeting the needs of mobile devices for high-performance graphics processing.

What is MXM connector?

The MXM connector is a high-density connector based on the PCI-Express (PCIe) interface, mainly used to connect discrete graphics cards or other expansion modules to mobile devices such as laptops, blade servers, and mobile workstations. It supports high bandwidth and fast data transmission, and is suitable for application scenarios with high requirements for graphics performance.

What is a mxm pcb connector?

Features of MXM connector:

  • High-density design: The MXM connector has a high-density contact configuration and supports multi-channel PCI Express signal transmission, such as 16-channel PCI Express signal performance.
  • Compatibility and upgradeability: The MXM connector adopts an open standard design, and users can upgrade the graphics processor without replacing the entire system, which improves the flexibility and maintainability of the device.
  • Miniaturization and low power consumption: MXM 3.0/4.0 connectors use 0.50mm pitch and 314 contacts, occupying less board space and suitable for compact device applications.

MXM connectors are widely used in the following scenarios:

  • Laptops: Users can upgrade the graphics card as needed without replacing the entire laptop.
  • Blade servers and mobile workstations: Suitable for applications that require high-performance graphics processing, such as graphic design, video editing, etc.
  • Compact PC systems: Such as all-in-one home theaters and miniaturized PCs, providing high-performance computing and graphics processing capabilities.

What is a mxm slot?

MXM slot (Mobile PCI Express Module) is an expansion slot standard for mobile devices, mainly used to connect independent graphics cards or other modules to mobile devices such as laptops and all-in-one computers, providing higher graphics performance and flexibility.

MXM slots are connected through the PCI Express bus, which can provide high bandwidth and fast data transmission, and are suitable for application scenarios with high requirements for graphics performance.

What is a mxm pcb connector?

Advantages and application scenarios of MXM slots

  • Upgradability: Users can replace or upgrade independent graphics card modules as needed to extend the service life of the device.
  • Flexibility: Users can choose graphics card modules of different specifications and performances according to actual needs to meet the requirements of different application fields for graphics performance.
  • Convenient maintenance and maintenance: The graphics card module is pluggable with the host, which is convenient for maintenance and maintenance. When the graphics card fails, you only need to replace the MXM module without disassembling the entire device or looking for professionals for repair.

Compared with the traditional fixed graphics card design, the MXM slot has significant advantages:

  • Upgradability: Users can simply replace the MXM module without replacing the entire device.
  • Flexibility: Provide greater flexibility to meet the requirements of different application fields for graphics performance.
  • Convenient maintenance and maintenance: Convenient and fast maintenance and maintenance process, reducing maintenance costs and time.

What are the most common PCB connectors?

The most common PCB connectors include the following:

  • Plug-in terminal blocks: With a variety of poles and wires, suitable for matching with PCB sockets with screw fixation. These terminal plugs use side connection technology, and the screw direction is perpendicular to the wire entry direction, which is easy to install and remove.
  • Screw terminal blocks: compact structure, reliable connection, firm and reliable shell, precise pin spacing, ensuring the reliability and large capacity of PCB wiring. The solder pin and the wire clamp are divided into two parts to ensure that the solder joints will not be touched and damaged when tightening the screws.
  • Spring terminal blocks: suitable for communication systems, lighting systems and monitoring systems. Spring-type terminal blocks can be directly inserted into PCB single-core wires without assistance, suitable for high-density wiring needs.
  • Fence terminal blocks: have the advantages of simple structure, intuitive and firm plate-type wire pressing, and the wire diameter range is 0.5mm to 6mm.
  • Pin/female headers: including pin/female headers, square pin single-row pin headers, square pin double-row pin headers, round pin single-row pin headers, etc., suitable for PCB boards of different thicknesses and sizes.

These connectors are selected according to specific application scenarios and design requirements to ensure reliable connection of circuit boards and stability of signal transmission.

What is a mxm pcb connector?

MXM PCB connector is a high-performance connector specially designed for connecting mobile graphics processing units (GPUs) and printed circuit boards (PCBs). It has the following features:

  • High-performance signal transmission: supports high-speed data channels, usually using the PCI Express bus standard, providing high bandwidth to meet the needs of modern graphics processors for fast processing of large amounts of data. Some also support hot-swap functions to facilitate device maintenance and upgrades.
  • Compact design: miniaturized to adapt to the space constraints of mobile devices, and can achieve reliable connections in limited spaces. Its design is flexible and can be installed and wired according to different device layout requirements. It can be closely integrated with other electronic components to improve PCB space utilization.
  • Reliable connectivity: It has a strong mechanical structure and can withstand adverse factors such as vibration, shock and temperature changes during the use of mobile devices. There is usually a locking mechanism to ensure that the GPU module is firmly and reliably connected to the PCB.

In PCBs, MXM PCB connectors mainly play the role of connecting GPUs and other system components, including signal transmission and power supply. It can also optimize PCB layout and design, such as improving space utilization efficiency, assisting heat dissipation management, and improving the maintainability and upgradeability of equipment.

What is a PCB connector used for?

PCB connectors play a variety of important roles in electronic devices. First, PCB connectors are used to connect and fix printed circuit boards to ensure stable and reliable electrical connections between circuit boards. They usually adopt a pin press-in design with super strong FPC cable clamping force, suitable for PCB board and board-to-board connections, including connectors, electronic connectors, communication equipment connectors, etc.

Secondly, PCB connectors are widely used in electronic devices. Whether it is a rigid circuit board (RPCB), a flexible circuit board (FPC) or a high-density interconnect board (HDI), corresponding connectors are required to ensure seamless interconnection between boards. These connectors are not only used for the transmission of signals, data and power, but also play an important role in connecting PCB boards and backbone network applications.

What is a mxm pcb connector?

In addition, the development trend of PCB connectors is towards miniaturization and modularization. As electronic devices develop towards miniaturization, PCB connectors are also constantly upgraded to meet more compact design requirements. Modular design enables various signal, data and current transmission to be completed in a single connector, improving the flexibility and reliability of connection.

What is the difference between MXM 3.0 Type A and Type B?

MXM 3.0 Type A and Type B have the following main differences:

1. Appearance size:

  • Length: Type A cards are relatively short, while Type B cards are longer. Specifically, Type A cards are half-height cards, which are shorter than Type B cards. This design makes them more suitable for the internal structure of laptops with strict space requirements, but their performance may be limited to a certain extent.
  • Width: The width of the two is the same, which means that in the width direction, their adaptability to the inside of the laptop is the same, but the difference in length determines their compatibility in different laptops.

2. Performance and power consumption:

  • Performance: Type B cards usually have stronger performance and can support higher-end graphics processing tasks, which can meet the needs of professional users or gamers with extremely high requirements for graphics performance. Type A cards have average performance and are suitable for ordinary users who do not have such high requirements for graphics performance.
  • Power consumption: Type B cards have relatively high power consumption due to their strong performance. This requires the laptop to have a better cooling system to ensure the stable operation of the graphics card, otherwise there may be problems such as performance degradation or hardware damage caused by overheating. Type A cards have low power consumption and relatively low requirements for cooling systems.

3. Application scenarios:

Type A cards are mainly used in ordinary laptops, especially those devices that do not require particularly high graphics performance but require independent graphics cards to meet basic graphics processing needs.

Type B cards are more used in high-end laptops, which require powerful graphics processing capabilities to support large-scale games, professional graphic design, video editing and other high-performance tasks.

In short, MXM PCB connectors, as an important electronic connection component, play a key role in mobile devices and high-performance electronic devices. At the same time, in order to improve the reliability and stability of the equipment, future MXM PCB connectors will also adopt a more robust mechanical structure and reliable electrical connection design, which can withstand more severe use environments and higher operating temperatures.

What is the difference between electroless nickel and electroplating?

December 9th, 2024

What is the difference between electroless nickel and electroplating? In PCB, chemical nickel plating relies on redox reaction, does not require external power supply, has good uniformity, strong bonding, and good solderability, but has slow deposition speed, difficult thickness control, and high cost. It is suitable for PCBs with high density, flexibility, aerospace and other high requirements. Electroplating relies on external current, has fast deposition speed, strong thickness controllability, and relatively low cost. It is more suitable for high-power, large-scale production and PCBs with special performance requirements.

PCB finition nickel or electrolytique​” refers to the finishing process applied to printed circuit boards (PCBs) using nickel or electrolytic techniques.

This finishing helps enhance the durability, conductivity, and overall performance of the PCB by providing a smooth, corrosion-resistant surface. Nickel plating, often applied through electroplating, is commonly used to improve solderability and enhance the reliability of connections.

What is PCB electroplating?

PCB electroplating refers to the process of depositing metal on the surface of a printed circuit board (PCB) through electrolysis to form a uniform, dense and well-bonded metal coating. This process is crucial in PCB production and directly affects the integration, conductivity, signal transmission and function of the PCB.

What is the difference between electroless nickel and electroplating?

Electroplating is the process of depositing a metal or alloy layer on the surface of a substrate through electrolysis. Specifically, PCB electroplating is the process of depositing metal on the surface of a PCB using electric current electrolysis to form a metal coating. This process does not include chemical copper plating, but is achieved through electrolysis.

What material is used in PCB plating?

The materials commonly used in PCB electroplating include metals such as copper, nickel, gold, silver, as well as electroplating solutions and various additives. These materials play different roles in the electroplating process and jointly ensure the quality and stability of the electroplated layer.

Main electroplating materials and their functions

  • 1. Copper: As the basic conductive layer of the circuit board, it has good conductivity and solderability.
  • 2. Nickel: As a barrier layer, it can effectively prevent the copper layer from oxidizing, while improving the hardness and wear resistance of the plating.
  • 3. Gold: Due to its excellent conductivity and corrosion resistance, it is often used as a contact surface plating layer to improve the reliability and life of the circuit board.
  • 4. Silver: Although it has excellent conductivity, it is expensive and easy to oxidize, and is mostly used in special occasions.

What is the difference between electroless nickel and electroplating?

The main differences between PCB chemical nickel plating and electroplating nickel are the principles, process steps, application areas, plating quality and environmental protection.

1. Principle and process steps

  • Electroplating nickel: Using an external current, a nickel layer is deposited on a conductive object (cathode) through electrolysis. The anode is usually pure nickel, and the current passes through the nickel salt (such as nickel sulfate, nickel chloride, etc.) in the plating solution to form a nickel layer on the surface of the object.
What is the difference between electroless nickel and electroplating?
  • Chemical nickel plating: No external current is required, but a chemical nickel plating solution is used to reduce nickel ions to metallic nickel in the solution, which is deposited on the surface of the object that has been specially treated, that is, catalyzed, to form a nickel plating layer.

2. Application areas and plating quality

  • Electroplating nickel: It is widely used on metal parts that need to enhance conductivity, wear resistance or appearance decoration. The thickness of the electroplated nickel layer is easy to control, which can be achieved by adjusting the current and plating time, and a high-gloss nickel layer can be obtained.
  • Chemical nickel plating: It is suitable for nickel plating of complex shapes or non-conductive materials. The uniformity of the chemically plated nickel layer is good, and even objects with complex geometric shapes can obtain a uniform thickness of the plating.

3. Environmental protection and cost

  • Electroplating nickel: Due to the need for external current and complex equipment, the cost is relatively high.
  • Chemical nickel plating: Most of the additives used are food grade, and no harmful substances such as lead, cadmium, and cyanide are used, so it is more environmentally friendly.

4. Binding strength and color

  • Binding strength: The binding strength of chemical nickel plating is generally higher than that of electroplated nickel.
  • Color: Currently, chemical nickel plating technology only has one color of pure nickel-phosphorus alloy on the market, while electroplating can achieve multiple colors.

What are the advantages of electroless plating over electroplating?

PCB chemical nickel plating has the following advantages over electroplating:

  • All-over plating ability: The chemical nickel plating layer has a higher all-over plating ability. As long as the solute exchange is sufficient in the place where the plating solution can be immersed, the chemical nickel plating layer will be very uniform. The electroplating layer will have a weaker all-over plating ability than chemical nickel plating due to the influence of current density.
  • Applicability: The chemical nickel plating process can plate the entire surface of any shape of workpiece, and there is no special requirement for the shape of the workpiece, and it is more universal.
What is the difference between electroless nickel and electroplating?
  • Binding strength and corrosion resistance: The binding strength of the chemical nickel plating layer is generally higher than that of the electroplated nickel layer, which affects the later corrosion resistance and acid and alkali resistance of the workpiece. Chemical nickel plating performs better in terms of corrosion resistance.
  • Production efficiency and cost: The generation speed of chemical nickel plating is faster than that of electroplating, which greatly improves production efficiency and saves energy and manpower.

What are the disadvantages of electroless nickel plating?

The main disadvantages of electroless nickel plating on PCB include:

  • High cost: Compared with traditional surface treatment technology, chemical nickel plating requires professional equipment and technical investment, resulting in high cost.
  • Coating thickness limit: Theoretically, the thickness of the coating should be unlimited, but in actual operation, the thickness of the coating is limited and it is difficult to plate thick.
  • Slow deposition rate: The deposition rate of chemical nickel plating is slow, and it takes a long time to complete the coating.
  • Poor brightness: The brightness of chemical nickel plating is worse than that of decorative electroplating.
  • Environmental impact: During the treatment process, waste liquid containing difficult-to-degrade chemicals will be generated. It takes a lot of manpower and material resources to treat these waste liquids, which has a certain impact on the environment.
  • Poor plating solution stability: The plating solution of chemical nickel plating has poor stability, complex composition, troublesome maintenance, adjustment and regeneration, and high material cost.

What is the standard PCB plating?

The standards for PCB plating mainly include two main standards: IPC-4552 and IPC-6012. The IPC-4552 standard specifies two main forms of gold plating: hard gold salt plating and soft gold salt plating. For hard gold salt plating, the minimum thickness is 1.27Îźm and the maximum thickness is 2.54Îźm; for soft gold salt plating, the minimum thickness is 0.23-0.76Îźm and the maximum thickness is 1.91Îźm.

What is the difference between electroless nickel and electroplating?
  • Material standard: The nickel purity of the nickel plating is usually high, generally above 99%. High-purity nickel can ensure the basic properties of the plating, such as good corrosion resistance and stability.
  • Thickness standard: When nickel is used as a protective plating (such as under the gold plating), the thickness is generally between 3-10Îźm. It can effectively resist the erosion of the underlying metal by the external environment, ensuring that the PCB maintains good performance during long-term use.
  • Appearance standard: The surface of the nickel plating should have a uniform color, generally a slightly shiny silver-white. If the color is uneven, it may indicate inconsistent plating thickness or uneven plating solution composition, which may affect its corrosion resistance and decorative properties.
  • Smoothness requirements: The surface of the plating should be relatively smooth and should not have obvious roughness. At the microscopic level, its surface roughness must meet certain standards to avoid affecting subsequent processing technology and electrical performance. At the same time, the surface should not have obvious pits, protrusions, pinholes and other defects.
  • Plating adhesion: Commonly used tape or cross-grid test method, the general electronics industry is qualified if the shedding area does not exceed 5%, and the high reliability industry has stricter requirements, not exceeding 1%.

How durable is electroless nickel plating?

The durability of PCB chemical nickel plating is mainly reflected in its hardness, wear resistance, corrosion resistance and bonding strength.

The hardness of the chemical nickel plating layer is usually high, generally 400-700HV. After proper heat treatment, the hardness can be further increased to approach or even exceed the hardness of the chromium plating layer, so it has good wear resistance.

In addition, the chemical nickel plating layer has a low porosity and easy passivation of the plating surface, showing high corrosion resistance, especially in media such as acid, alkali, salt, ammonia and seawater. Its corrosion resistance is even better than that of stainless steel.

The bonding force between the chemical nickel plating layer and the substrate is generally high, which helps to maintain the integrity and stability of the plating layer during long-term use.

How long does nickel electroplating last?

The service life of PCB nickel electroplating mainly depends on the use environment and maintenance. Specifically, the replacement cycle of the nickel electroplating plate is not fixed, but varies according to the use environment and conditions.

The main factors affecting the service life of the nickel electroplating plate include:

  • Wear degree: The nickel electroplating plate will gradually wear due to friction during use. When the surface wear degree exceeds 30%, the protection performance will drop significantly, and replacement should be considered at this time.
  • Surface scratches: If visible scratches appear on the surface of the nickel electroplating plate, especially when the scratch depth exceeds 1mm, it will not only affect the appearance, but also may reduce its corrosion resistance, and it needs to be replaced in time.
  • Oxidation and rust: In a humid or corrosive environment, the nickel electroplating plate is prone to oxidation and rust. When the surface is oxidized or rusted too heavily, the protective effect will be greatly reduced, and it should be replaced at this time.

What voltage is needed for nickel electroplating?

The voltage required for PCB nickel electroplating is generally between 1.5 and 6 volts. However, this varies depending on many factors. In actual operation, the selection of the appropriate voltage value depends on the specific electroplating needs and conditions.

First, a basic voltage range needs to be determined based on the composition and properties of the electroplating solution. Then, the optimal voltage value is found through experiments and adjustments to obtain the desired electroplating layer thickness, uniformity and quality.

In addition, other factors such as current density and temperature need to be considered for the effect of electroplating. Generally, increasing the current density or raising the temperature can speed up the electroplating speed, but it may also have an adverse effect on the quality of the electroplating layer. Therefore, when selecting the voltage value, various factors need to be considered comprehensively to achieve the best electroplating effect.

In summary, chemical nickel plating and electroplating each have their own advantages and disadvantages in PCB manufacturing, and the appropriate surface treatment method should be selected based on specific application requirements and cost considerations.

What is a Circuit card Assembly? Circuit Card Assembly Definition

December 7th, 2024

What is a CCA Circuit Card Assembly?

A circuit card assembly, often abbreviated as CCA, is a fundamental component in modern electronic devices. It is essentially a populated printed circuit board (PCB). A PCB is a flat board made of insulating material with conductive pathways etched or printed on it. The CCA takes this a step further by having electronic components such as resistors, capacitors, integrated circuits, and connectors mounted and soldered onto the PCB. These components are carefully placed and connected according to a specific circuit design, which enables the board to perform a particular function or set of functions within an electronic system. For example, in a smartphone, the CCA might be responsible for handling the communication functions, power management, or display control.

CCAs are essential in transforming electronic designs into physical devices. Without them, modern technology would lack the precision and functionality we rely on daily. They are not standalone products but rather building blocks for larger systems. Whether in smartphones, automotive controls, or industrial machinery, CCAs ensure devices operate as intended.

Circuit Card Assembly vs. PCB

When comparing a CCA to a PCB, there are several key distinctions. A PCB is the basic platform, typically a flat panel made of non-conductive material like fiberglass epoxy laminate, onto which conductive paths or traces are etched or printed. It serves as the foundation, providing the physical and electrical interconnectivity layout.

On the other hand, a CCA is a more complete and functional entity. It is a PCB that has been populated with various electronic components. These components, such as resistors, capacitors, integrated circuits, and connectors, are carefully mounted and soldered onto the PCB in accordance with a specific circuit design. For example, a PCB for a simple amplifier circuit might just have the etched traces for the signal path, but the CCA would have the actual transistors, resistors, and capacitors attached to perform the amplification function.

In terms of manufacturing, the PCB manufacturing process focuses on creating the board itself. This involves steps like preparing the substrate, imaging the circuit layout, etching the traces, and drilling holes for component mounting. The CCA manufacturing process builds upon this. It requires additional steps such as component sourcing, accurate component placement using pick-and-place machines, and soldering the components to the PCB. The quality of the PCB is vital for the success of the CCA. If the PCB has flaws in its traces, such as breaks or shorts, it can lead to malfunctioning CCAs.

Circuit Card Assembly Diagram

Circuit Card Assembly Design

Designing a circuit card assembly is a meticulous process. It begins with a clear understanding of the product’s purpose and functionality. Engineers follow these steps:

1. Schematic Creation:

The schematic acts as a blueprint, detailing the electrical connections between components. It defines how the circuit should operate.

2. PCB Layout Design:

The layout focuses on arranging components efficiently while ensuring signal integrity. Tools like CAD software help optimize space and performance.

3. Simulation and Testing:

Before physical production, simulations verify that the design meets all specifications. This minimizes errors in the final product.

4. Bill of Materials (BOM):

A BOM lists every component, including specifications and quantities. It ensures all necessary parts are available for assembly.

5. Prototyping:

A prototype is built to test the design under real-world conditions. Any issues are addressed before mass production.

If the prototype are verified, then you can go to next step – PCB mass production.

What is a Circuit Card Assembly Used For?

Circuit card assemblies are used in virtually every electronic application. Below are some examples of their widespread utility:

  • Consumer Electronics
  • Medical Equipment
  • Aerospace and Defense
  • Automotive Systems
  • Industrial Automation
  • Communication Devices
  • Health-care

Circuit Card Assembly HS Code

What is Circuit Card Assembly HS Code? The Harmonized System (HS) Code for circuit card assemblies is 8538.90, which covers parts suitable for use solely or principally with the apparatus of heading 8537. This classification includes CCAs as essential components in various electronic systems. Correctly identifying HS codes ensures compliance with international trade regulations. Here are some commonly used HS codes in the electronics and circuit board industry:

  • 8534.00: Printed circuits (excluding assembly). This code applies to bare PCBs, which have copper tracks and pads but no mounted components.
  • 8537.10: Boards, panels, and consoles with electronic components for controlling electrical circuits.
  • 8542.39: Electronic integrated circuits, including microprocessors and memory chips, which are often used in CCAs.
  • 8473.30: Parts and accessories for computers, which may include PCBs and CCAs.
  • 9030.90: Parts for measuring or testing instruments, often used for CCA inspection during manufacturing.

Circuit Card Assembly Manufacturers

If you are looking for a relibale circuit card assembly manufacturer, then Best Technology is your best-choice. Best Technology located in Shenzhen and Vietnam, it is a professional PCB and PCBA manufacturer. Our complete CCA manufacturing services are tailored to our customers’ needs in assemblies. We mainly focus on saving our clients time and money by delivering the highest quality box build assembly solutions:

  • Complete Testing and Burn-In
  • Pin Through-hole Assembly
  • Selective Wave Soldering
  • Conformal Coating
  • Software Loading
  • Complete box build for a variety of applications

What Does CTR Stand for on a PCB?

December 6th, 2024

What Does CTR Stand for on a PCB? CTR, or Current Transfer Ratio, is a measure of efficiency in optocouplers, which are devices that transmit signals between isolated parts of a circuit. Optocouplers use light-emitting diodes (LEDs) and photodetectors to pass signals while maintaining electrical separation. This separation prevents issues like interference and surges from traveling through the circuit.

CTR is represented as a percentage, showing how much input current is successfully transferred to the output. For instance, if an optocoupler’s LED consumes 10 mA of input current and the photodetector outputs 8 mA, the CTR is 80%. Higher CTR values indicate more efficient current transfer, a critical factor in maintaining signal integrity.

Optocouplers are widely used in applications like power supplies, microcontroller interfaces, and industrial automation. CTR ensures that these devices perform as expected, allowing signals to pass efficiently without compromising isolation.

How Is CTR Calculated and Measured?

CTR, or Current Transfer Ratio, is calculated using the formula:

CTR (%) = (Output Current / Input Current) × 100

This straightforward calculation provides insight into how efficiently an optocoupler transfers current from its input (LED side) to its output (photodetector side). Let’s understand this with a practical example.

Example: Calculating CTR for an Optocoupler

Imagine you’re using an optocoupler in a circuit where:

Input Current (I_in) = 10 mA (current supplied to the LED inside the optocoupler)

Output Current (I_out) = 7.5 mA (current delivered by the photodetector on the output side)

To calculate the CTR:

Substituting the values:

This result means the optocoupler transfers 75% of the input current to the output. The remaining 25% might be lost due to inefficiencies within the optocoupler, such as LED light output or photodetector sensitivity.

Using CTR to Select Components

In practice, engineers compare the calculated CTR to the component’s datasheet specifications. For instance:

  • If the datasheet specifies a minimum CTR of 70% for your application, the measured value of 75% indicates the component performs adequately.
  • If the CTR drops below the required threshold (e.g., 65%), the optocoupler might be unsuitable for the circuit or indicate a degraded component.

Factors That Influence CTR in Optocouplers

The main factors that affect the Current Transfer Ratio (CTR) of an optocoupler include the light source’s luminous intensity, ambient temperature, LED current (IF), collector-emitter voltage (VCE), and aging effects.

  • Light Source’s Luminous Intensity

The luminous intensity of the light source depends on the forward current (IF) applied to it. The higher the forward current, the brighter the light, and the higher the CTR. However, operating at higher forward currents will reduce the lifetime of the optocoupler more quickly, so there needs to be a balance between CTR and lifetime when designing.

  • Ambient Temperature

Ambient temperature significantly affects CTR. The luminous efficiency of the LED has a negative temperature coefficient, while the amplification factor of the phototransistor has a positive temperature coefficient. Therefore, in high-temperature environments, the CTR will decrease. For example, at 25°C, the CTR may be 100%, but at 60°C, it could drop to 60%.

  • LED Current (IF)

The input current (IF) directly impacts the CTR. It is often necessary to carefully adjust IF to ensure the appropriate CTR. A larger IF will increase CTR, but both too high or too low a value of IF can affect the optocoupler’s performance.

  • Collector-Emitter Voltage (VCE

The collector-emitter voltage (VCE) on the output side also has an impact on CTR. It is necessary to consider the effect of VCE on CTR during the design process to ensure the stability of the optocoupler under different operating conditions.

  • Aging

Over time, the light output of the LED gradually diminishes, causing the CTR to decrease. The design should account for this reduction in CTR and allow for a margin to ensure stable operation over the long term.

The Role of CTR in PCB Design

Optocouplers play a vital role in circuits requiring electrical isolation. For instance, in industrial systems, sensitive control signals often need to be protected from high-voltage environments. Optocouplers achieve this while ensuring the signal reaches its destination.

Low CTR values can lead to insufficient output current, potentially causing the circuit to fail. On the other hand, choosing optocouplers with excessively high CTR can result in overengineering, increasing costs without significant benefits. Engineers must strike a balance by selecting components with CTR values tailored to the application’s needs.

Why CTR Values Change Over Time?

No electronic component is immune to wear and tear, and optocouplers are no exception. Over time, factors like temperature fluctuations, environmental conditions, and extended usage can alter an optocoupler’s CTR. While these changes are usually gradual, they can affect circuit performance if not accounted for during the design phase.

For instance, an optocoupler used in a high-temperature environment may experience accelerated degradation, causing its CTR to decline. To counter this, engineers often design circuits with a margin for error, ensuring the system remains operational even if the CTR drops slightly.

How to Select the Right CTR for Your PCB?

Selecting the right CTR requires understanding your circuit’s requirements. Here are a few tips to guide the selection process:

  • Know Your Current Needs: Determine the input and output current requirements for your circuit.
  • Consider Environmental Conditions: If your device operates in extreme temperatures, choose optocouplers rated for those conditions.
  • Plan for Aging: Account for potential decreases in CTR over time by adding a safety margin.
  • Working with reliable suppliers who provide detailed component specifications makes it easier to find optocouplers that meet your needs.

CTR, or Current Transfer Ratio, is more than just an abbreviation on a PCB. It represents the efficiency of signal transfer in optocouplers, ensuring that circuits operate reliably while maintaining electrical isolation. Understanding CTR is essential for designing efficient and durable electronic systems.

When designing or manufacturing PCBs, choosing the right components with suitable CTR values can make a significant difference. Reliable suppliers who understand the nuances of electronic design can help you achieve optimal results. Partner with us for high-quality PCBs that meet your specific needs, backed by expertise and precision.

What Nipper to Cut Keyboard PCB?

December 6th, 2024

If you’re into building or modifying mechanical keyboards, you know how crucial it is to handle the PCB carefully. Whether you’re replacing switches, trimming excess leads, or modifying the layout, precision is everything. One wrong cut can ruin a board or lead to performance issues. That’s where choosing the right nipper becomes essential.

In this guide, we’ll explore the different types of nippers you can use for keyboard PCBs, their applications, and how to get the best results. By the end, you’ll know exactly which tool to pick for your next keyboard project.

What Nipper to Cut Keyboard PCB?

Why Is the Right Nipper Important for Keyboard PCBs?

A keyboard PCB is a delicate and vital component that connects switches, diodes, and other elements. Unlike regular DIY tasks, working on a PCB requires precision and care. Using an improper tool can:

  • Damage the PCB traces.
  • Leave sharp edges that cause short circuits.
  • Stress or crack the board, making it unusable.

This is why professionals and enthusiasts alike rely on specialized nippers. These tools are designed to cut cleanly and precisely, reducing the risk of damage and ensuring your keyboard functions perfectly.

Best Types of Nippers for Cutting PCB

1. Flush Cut Nippers: Precision at Its Best

What Nipper to Cut Keyboard PCB? Flush cut nippers are the go-to tool for most keyboard enthusiasts. They’re designed to cut leads and wires flush with the surface, leaving no protruding edges.

Key Features:

Flat cutting surface: Allows you to cut components as close as possible to the PCB.

Compact design: Easy to use in tight spaces around small components.

Best For:

Trimming component leads after soldering.

Cutting wires that connect switches to the PCB.

Removing small plastic supports or tabs.

Popular Models:

Hakko CHP-170 Micro Cutter: Known for its precision and affordability.

Xuron 170-II Micro-Shear Cutter: Offers excellent durability and a smooth cutting experience.

If your goal is a clean, professional-looking PCB with no rough edges or excess material, flush cut nippers are the best option. They’re especially useful for those who value aesthetics and functionality in their keyboard builds.

What Nipper to Cut Keyboard PCB?

2. End Cut Nippers: Ideal for Thick Components

End cut nippers have a different design compared to flush cutters. The cutting edge is perpendicular to the handle, allowing you to cut thicker components or tabs with ease.

Key Features:

Perpendicular cutting edge: Offers better leverage and control.

Heavy-duty construction: Can handle thicker wires and components.

Best For:

Cutting PCB mounting tabs.

Trimming thicker component leads or wires.

Removing solder joints in hard-to-reach areas.

Popular Models:

Klein Tools 7280: A reliable tool for heavy-duty cutting.

IGAN-330 End Cutting Plier: Offers precision and strength for demanding tasks.

These nippers are perfect for situations where flush cutters might struggle, such as cutting through reinforced sections or thick leads. They provide more power and control, making tough cuts easier and safer.

3. Diagonal Cut Nippers: Versatility and Convenience

Diagonal cut nippers are a versatile tool that can handle a wide range of tasks. Their angled design allows you to access tight spaces while providing a clean cut.

Key Features:

Angled cutting edge: Makes it easier to reach confined areas.

Sharp blades: Ensure a clean and precise cut.

Best For:

Cutting component leads in crowded PCBs.

Trimming wires and cables.

Modifying plastic enclosures or cases.

Popular Models:

KNIPEX Diagonal Cutters: Known for their precision and durability.

Wiha Precision Diagonal Cutters: A favorite among professionals for intricate work.

If you need a versatile tool that can handle various tasks beyond just PCB work, diagonal cut nippers are a great choice. They offer a balance of precision and convenience, making them a valuable addition to any toolkit.

How to Cut a Keyboard PCB Safely?

Cutting a keyboard PCB requires more than just the right tool. Proper technique and safety precautions are equally important. Here are some tips to ensure a smooth and successful cutting process:

What Nipper to Cut Keyboard PCB?

1. Select the Right Nipper

Choose a nipper based on the specific task. Flush cutters are ideal for precision work, while end cutters handle thicker components. Diagonal cutters are great for general-purpose use.

2. Inspect the PCB

Before making any cuts, inspect the PCB for reinforcement layers or sensitive components. Some boards have metal or thicker copper layers that require more durable tools.

3. Apply Even Pressure

When cutting, apply even pressure to avoid stressing or cracking the board. Twisting or excessive force can cause damage.

4. Cut at the Right Angle

Position the nipper at the correct angle to ensure a clean cut. For flush cutters, align the flat surface with the PCB for the best results.

5. Clean Up After Cutting

Once the cuts are made, inspect the PCB for any leftover debris or sharp edges. Use a small brush or compressed air to clean the area and ensure there are no loose particles.

Common Mistakes to Avoid

While cutting a keyboard PCB may seem straightforward, there are some common mistakes to watch out for:

1. Using the Wrong Tool

Using regular wire cutters instead of specialized nippers can lead to rough cuts and potential damage.

2. Cutting Too Close

Cutting too close to the PCB can damage traces or solder joints, leading to functionality issues. Always leave a small buffer if unsure.

3. Applying Too Much Force

Excessive force can crack the PCB or damage nearby components. Use gentle, even pressure for clean cuts.

4. Ignoring Safety Gear

Always wear safety glasses to protect your eyes from flying debris, especially when cutting thicker components.

Frequently Asked Questions

1. Can I Use Wire Cutters for PCB Work?

Wire cutters can be used in some cases, but they lack the precision of flush or diagonal cutters. For best results, use tools specifically designed for PCB work.

2. How Do I Know If My Nippers Are Dull?

Dull nippers may leave rough or uneven cuts. If you notice decreased precision or increased effort, it’s time to replace them.

3. What Is the Best Nipper for Beginners?

Flush cut nippers like the Hakko CHP-170 are affordable, easy to use, and provide excellent results, making them ideal for beginners.

4. Can Nippers Be Used for Desoldering?

Nippers can trim excess solder after desoldering but should not replace proper desoldering tools.

5. How Often Should I Replace My Nippers?

Replace nippers when they lose precision or show signs of wear, such as dull blades or misalignment.

Cutting a keyboard PCB may seem like a small task, but it can make a big difference in the final result of your keyboard build. The right nipper ensures clean cuts, preserves the integrity of the board, and enhances the overall functionality of your keyboard.

At Best Technology, we have over 18 years in the PCB cutting and PCB manufacturing. Choose us for your PCB cutting needs and experience the difference in quality and performance.

What File Type is used for PCB?

December 5th, 2024

PCB designs are stored in various file types depending on the design software. The most common file type used is the Gerber file. It contains detailed information about each layer of the PCB, including traces, pads, and vias. These files guide the manufacturing process, ensuring every layer of the board is built precisely as intended.

Other formats like DXF, ODB++ and IPC-2581 are also used. They provide more comprehensive data, which can streamline the manufacturing process by reducing the need for multiple files.

What Is the Standard PCB File?

The Gerber file is recognized as the industry standard for PCB manufacturing. It serves as the blueprint that fabricators follow to build a PCB. Originally developed by Ucamco, the Gerber format has undergone multiple updates to enhance its functionality. Nowadays, the Gerber file is supported by virtually all PCB manufacturers and CAM (Computer-Aided Manufacturing) tools.

The standard gerber file format can be divided into RS-274 and RS-274X, Gerber X2 (gerber X2 is the latest version). The gerber file in RS-274 format is a separate file from aperture. aperture in RS-274X format is integrated into the gerber file. Generally speaking, a complete PCB Gerber file should include:

  • Copper layers (top and bottom)
  • Solder mask layers
  • Silkscreen layers
  • Drill files for holes

And below are some common terms used in a PCB file.

  • .APR Aperture Data
  • .GKO Keep Out Layer
  • .GTO Top Overlay
  • .GBO Bottom Overlay
  • .GPT Top Pad Master
  • .GPB Bottom Pad Master
  • .GTS Top Solder Mask
  • .GBS Bottom Solder Mask
  • .GTL Top Layer
  • .GBL Bottom Layer
  • .GTP Top Solder Paste
  • .GBP Bottom Solder Paste
  • .G1 MidLayer1
  • .G2 MidLayer2
  • .G3 MidLayer3
  • .G4 MidLayer4
  • .GP1 Internal Plane1
  • .GP2 Internal Plane2
  • .GM1 Mechanical1
  • .GM2 Mechanical2
  • .GM3 Mechanical3
  • .GM4 Mechanical4
  • .GD1 Drill Drawing or NC
  • .DRL Drill Data
  • .TXT Drill Position
  • .DRR Drill Tool size
  • .LDP Drill Report

What Files Are Needed to Make a PCB?

To manufacture a PCB, several files are required, each serving a unique purpose. The essential files include:

  • Schematic file

This is the start for PCB design. It shows the connection relation and component symbol of electronic circuit. For example, in a simple schematic diagram of the power supply circuit, it will clearly show the connection between the transformer, the rectifier diode, the filter capacitor and the voltage regulator chip. Through the schematic file, designers can clarify the function and signal flow of the entire circuit, providing the basis for subsequent PCB layout.

  • PCB design file

This kind of file is generated on the basis of the schematic. It describes in detail the physical size of the PCB, the layer structure (such as 2-layer PCB, 4-layer PCB board, etc.), the component layout, the direction of the line and the holes. Take a four-layer PCB design file as an example, which will clearly indicate the distribution of signal layers, power layers, and ground plane layers. For component placement, it will be accurate to the coordinate position of each chip, resistor, capacitor and other components on the PCB board surface and their placement direction.

  • Gerber file

These define the copper traces, pads, and component outlines for each layer.

  • Drilling file

The drill file is used to indicate the drill location and dimensions on the PCB. In multilayer PCBS, the location and size of the holes are very critical. The drilling file tells the PCB manufacturing device exactly where the center coordinates of each hole are and the size of the aperture.

  • Component coordinate file (.csv or.txt etc.)

The component coordinate File is also known as the “Pick and Place File”, which facilitates PCB assembly plants to perform component placement and plug-in operations.

This file contains the coordinate position of each component on the PCB board (X, Y coordinates), rotation Angle, component package type and other information. In an automated SMT production line, the mounter can accurately pick up the component from the strip and place it in the correct position on the PCB board based on the information in the component coordinate file.

  • Bill of Materials (BOM)

A listing of all components’ details required for assembly, including part numbers, manufacturers, quantities and some marks.

What Is the Difference Between Gerber File and Board File?

A Gerber file is a manufacturing file. It describes the physical layout of the PCB layers, ready for fabrication. In contrast, a board file is a design file used within the PCB design software, such as Altium Designer, Eagle, or KiCad. Their key Differences are:

  • Gerber File: Used for manufacturing; contains 2D layout data.
  • Board File: Used for design; editable and contains schematic and layout information.

Manufacturers don’t use board files directly. They need Gerber files to fabricate the PCB.

What Is the Extension for a PCB File?

PCB files come with different extensions based on the software used to design them. Some common extensions include:

  • .BRD: Used by Eagle and other design tools.
  • .PCB: Common for Altium Designer and some older software.
  • .GBR: The standard extension for Gerber files.
  • .PcbDoc: Native to Altium Designer for saving PCB projects.

Each extension represents a different type of file, but they all contribute to the PCB design process.

How to Open a .PCB File?

How to open a .PCB file? Opening a .PCB file depends on the design software it was created with. Firstly, you should determine the software used to create the file. Common tools include Altium Designer, Eagle, and KiCad. Let’s take Altium as an example:

1. Install the Software: If you don’t have this software on your windows, please download and install the corresponding software firstly.

What File Type is used for PCB?

2. Open the File: Use the “Open” option within the software to load the .PCB file.

What File Type is used for PCB?

3. Choose the .PCB file what you want to open, and click “open”

What File Type is used for PCB?

4. Then you can check the PCB file by Altium Designer.

What File Type is used for PCB?

If you don’t have access to the original software, you can use a viewer like Gerbv or an online PCB viewer to inspect the file. However, these viewers may only provide a limited preview of the file and cannot edit it.

How Do I Convert a .PCB File to PDF?

Converting a .PCB file to a PDF is useful for sharing designs with clients or team members who don’t have design software. Here’s a simple way to do it with Altium Designer:

1. Open the .PCB File

Open a .PCB file; Click “File” → “Smart PDF(M)” in the toolbar successively, and the “Smart PDF Wizard” page pops up, as shown in FIG. 1 and FIG. 2 below;

What File Type is used for PCB?

(FIG.1)

What File Type is used for PCB?

(FIG.2)

2. Export as PDF

In the smart PDF screen, click “Next” to enter the configuration selection screen for output PDF – including the following:

1). “Export Target File” + storage path and name of the output PDF file;

2). Whether to export the BOM table: If this parameter is selected, select the BOM table template. If it is not selected, click Next to go to the next step.

3). Set PDF printing parameters, according to the Settings of this page to determine the output of the entire PCB file or output a specific layer of files separately;

4). Set the “color” of PDF, there are “Color”, “monochrome”, “gray” options can be selected;

  • “Color” option means the PDF file is output in accordance with the original color of each layer;
  • “Monochrome” means the actual output of the file is all black;
  • “Gray” means the actual output of the file is all gray display;

Below I choose the “Monochrome” option:

What File Type is used for PCB?

3. Enter “Print” and save the PDF: Choose a location and save the file.

Above are the end of this sharing, whether you’re dealing with Gerber files, board files, or converting formats, I hope this post is useful for you. If you have any other questions, welcome to e-mail with us at sales@bestpcbs.com, we are happy to help you.

How to Wire PCB Input Jack- Step by Step Guide

December 5th, 2024

What Is a PCB Input Jack?

A PCB input jack is a connector that establishes a physical link between an external device and a PCB. These connectors serve as entry points for power, data, or audio signals, depending on the application. There are various types of input jacks, such as mono jacks, stereo jacks, and different connector formats like 3.5mm, 6.35mm (1/4 – inch), and more. A mono jack has two connections (tip and sleeve), while a stereo jack typically has three (tip, ring, and sleeve). The tip is usually for the positive signal, the sleeve is for the ground, and in a stereo jack, the ring is for an additional channel (like the right channel in audio applications).

How to Wire PCB Input Jack- Step by Step Guide

Before wiring, you need to understand the pin configuration of the specific input jack you’re using. This information is usually available in the datasheet provided by the manufacturer. For example, in a 3.5mm stereo jack, the tip might be connected to pin 1, the ring to pin 2, and the sleeve to pin 3.

What is the purpose of the input jack?

The purpose of an input jack is to serve as a connection interface between external devices and a PCB. It allows signals, power, or data to enter the circuit, enabling the PCB to communicate or interact with other devices. Input jacks are commonly used in various electronic applications, including:

1. Audio Transmission

In devices like headphones, speakers, or microphones, audio input jacks receive sound signals from external sources and transmit them to the circuit for processing or amplification.

2. Power Supply

Power jacks provide a pathway for external power sources to supply energy to a device. This is common in laptops, routers, and other electronics that require an external adapter.

3. Data Transfer

Input jacks such as USB or Ethernet ports allow data to flow between the PCB and external devices.

4. Signal Interface

In control systems and instrumentation, input jacks receive analog or digital signals from sensors or other control devices.

What should you do before Wiring?

Before the wring process, there are some preparation works to ensure a good soldering.

  1. Gather Tools and Materials

You’ll need soldering equipment, including a soldering iron, solder wire, and flux (if necessary). Also, make sure you have wire strippers and cutters. The wire you choose should be appropriate for the current and signal requirements of your circuit. For low – power audio applications, a stranded wire with a gauge like 22 – 24 AWG (American Wire Gauge) is usually sufficient.

  • PCB Layout

Examine the PCB layout around the input jack area. There should be pads or through – holes designated for the jack connections. These are usually labeled according to the function (e.g., “Tip”, “Ring”, “Sleeve”, “GND”) or with pin numbers that match the jack’s pinout.

  • Inspect PCB

Check the PCB for any damage, such as cracks or broken traces or dust on the Pads. Ensure the pads where the jack will be soldered are clean and free from oxidation.

Wiring PCB input jack- step by step

1. Stripping the Wire: Use wire strippers to carefully remove a short section (about 3 – 5mm) of insulation from the end of the wire that will connect to the input jack. Make sure not to nick or damage the wire inside the insulation.

    2. Inserting the Wire: Insert the stripped end of the wire into the appropriate hole or onto the pad on the PCB corresponding to the jack’s connection point. For through – holes, the wire should pass through the hole so that a small portion is visible on the other side of the PCB.

    How to Wire PCB Input Jack- Step by Step Guide

    3. Soldering

    • Heat the soldering iron to the appropriate temperature (usually around 300 – 350°C for standard solder).
    • Apply a small amount of solder to the tip of the soldering iron to tin it. This helps the solder flow more smoothly.
    • Place the tip of the soldering iron against the wire and the pad or through – hole at the same time. Then, feed a small amount of solder onto the joint. The solder should flow around the wire and form a smooth, shiny joint. Avoid using too much solder, as it can lead to shorts between adjacent connections.
    • After soldering, allow the joint to cool for a few seconds. You can use a pair of tweezers to hold the wire in place during cooling to ensure it doesn’t move and create a bad joint.

    4. Post – Wiring Checks

    • Visual Inspection: Examine each joint carefully to make sure there are no cold joints (where the solder didn’t properly adhere), shorts (unintended connections between different wires or pads), or other visible defects. A good solder joint should be smooth, shiny, and cover the wire and pad or through – hole completely.
    • Continuity Testing: Use a multimeter to test the continuity between the input jack’s pins and the corresponding points on the PCB. Set the multimeter to the continuity or resistance measurement mode. For example, when testing the connection between the tip of the input jack and the PCB pad labeled “Tip”, the multimeter should beep (indicating a low – resistance connection) if the wiring is correct.
    • Function Testing: If possible, connect the input jack to the appropriate input source (such as an audio signal generator for an audio input jack) and test whether the signal is correctly received and processed by the circuit on the PCB. This might involve using an oscilloscope or other testing equipment to monitor the signal at different points in the circuit.

    How Do You Identify the Input Jack Pins?

    Understanding the pin configuration of the input jack is crucial for proper wiring. While some jacks have labeled pins, others may require a closer inspection or reference to a datasheet. Let’s explore how to identify the pins for common types of jacks:

    1. Audio Jacks (TRS and TRRS)

    Audio jacks are classified based on their Tip, Ring, and Sleeve (TRS) structure.

    Tip (T): Carries the left audio channel.

    Ring (R): Carries the right audio channel.

    Sleeve (S): Acts as the common ground.

    For a TRRS (Tip, Ring, Ring, Sleeve) jack, the second ring often carries a microphone or additional signal.

    2. Power Jacks

    Power jacks typically have three pins:

    Positive (VCC): Supplies power to the device.

    Negative: Returns current to complete the circuit.

    Ground (GND): Connects to the common ground of the PCB.

    3. USB Jacks

    USB jacks have multiple pins, each with a specific function:

    VCC: Provides power to the connected device.

    GND: Connects to the ground.

    Data+ (D+): Transfers positive data signals.

    Data- (D-): Transfers negative data signals.

    Refer to the datasheet of your specific jack for accurate pin identification.

    What Tools and Materials Do You Need?

    Wiring a PCB input jack requires a few essential tools and materials. Having the right equipment ensures a clean, reliable connection:

    • Soldering Iron: Used to melt solder and join components.
    • Solder: The metal alloy that creates the electrical connection.
    • Wire Stripper: Removes the insulation from wires.
    • Tweezers: Helps position small components.
    • Multimeter: Tests electrical connections for continuity and voltage.
    • Flux: Enhances the flow of solder and improves the bond.
    • PCB Holder: Secures the PCB in place during soldering.

    How Can You Avoid Common Wiring Mistakes?

    Wiring mistakes can lead to malfunctioning devices or damaged components. Here’s how to avoid common pitfalls:

    • Double-Check Pin Connections: Before soldering, ensure each wire is connected to the correct pin.
    • Use Quality Solder: Cheap solder can lead to weak connections. Use a high-quality solder for better results.
    • Avoid Cold Joints: Ensure the solder flows properly and bonds well with the pad and pin.
    • Inspect for Shorts: Check for any solder bridges between pins, which can cause short circuits.

    How Do You Test the Wired PCB Input Jack?

    Testing is a critical step after wiring the input jack. It ensures all connections are secure and functional. Here’s how to test your work:

    1. Visual Inspection

    Look for any obvious issues, such as loose wires, cold solder joints, or solder bridges.

    2. Continuity Test

    Use a multimeter to test the continuity between the jack and PCB pads. This verifies that the connections are intact.

    3. Functionality Test

    Connect the external device to the input jack and verify that it works as expected. Test for audio quality, power delivery, or data transfer, depending on the jack type.

    Wiring a PCB input jack requires attention to detail and proper technique. Whether you’re wiring an audio jack, power jack, or USB port, preparation and testing are key to success. If you need high-quality PCBs with precise input jack placements, our company offers customized solutions to meet your needs. Contact us today to learn how we can support your next project with reliable PCB solutions.

    PCB Manufacturers in USA ​& PCB Fabrication Manufacturer​

    December 4th, 2024

    Best Technology Circuit is one of a leading PCB manufacturers in USA. Our products cover a wide range of solutions, from standard FR4 PCBs and multi-layer PCBs to advanced options like metal-based PCBs (MCPCBs), ceramic PCBs, flexible and rigid-flex PCBs, and high-frequency PCBs. As a leading PCB fabrication manufacturer, we are equipped with a monthly production capacity of 260,000 square feet (28,900 square meters), allowing us to complete over 1,000 different boards every month. Additionally, we understand the need for speed in today’s market, which is why we offer expedited services, ensuring urgent boards can be shipped out within 24 hours to meet tight deadlines.

    PCB Manufacturers in USA ​& PCB Fabrication Manufacturer

    As a custom manufacturer, we believe that continuous growth is essential to success. That’s why we prioritize significant investments in research and development, staying ahead of the latest trends in the PCB industry. Our commitment to quality and customer satisfaction drives us to build lasting relationships and offer personalized support and solutions. While many PCB manufacturers in USA focus solely on production, we go beyond by providing tailored services that address the unique needs of each client. This approach has helped us stand out among PCB fabrication manufacturers, delivering reliable, high-performance boards to meet diverse industry demands. Whether you’re looking for specialized designs or quick turnaround times, we are here to support your goals.

    What is PCB Manufacturing

    What is PCB Manufacturing?PCB manufacturing is the process of converting circuit design into actual printed circuit boards (PCBs) through a series of processes. PCBs are boards used to connect and support electronic components in electronic devices. They are mainly composed of insulating materials and conductive materials. They connect various electronic components to each other through conductive paths, power supply, and signal transmission.

    How is a PCB Manufactured

    How is PCB manufactured? First, the PCB circuit diagram is designed, then the film is made, coated, exposed, developed, etched, laminated, drilled, electroplated, and finally surface treated to manufacture the PCB.

    Design: First, the designer uses CAD software to design the circuit diagram and convert it into a PCB layout. This process includes determining the connection method of the circuit, the location of components, etc.
    ‌Film making: The designed circuit diagram is made into a transparent film sheet through a photoplotter for exposure.
    ‌Coating: A layer of photosensitive material, usually photoresist, is coated on the substrate. This layer of material changes when exposed, and the unexposed part will be removed in the subsequent development process.
    ‌Exposure: The film is covered on the substrate coated with the photosensitive material, and the photosensitive material is cured by ultraviolet exposure.
    ‌Development: Remove the unexposed photosensitive material and leave the circuit pattern.
    ‌Etching: Use chemical etchants to remove the copper foil that is not protected by the photosensitive material to form conductive lines and pads.
    ‌Lamination: Laminate multiple layers of circuit boards together to form a multi-layer PCB.
    ‌Drilling: Drill corresponding holes on the board according to the design requirements for connecting different circuit layers.
    ‌Plating: Electroplating metal in the hole to form a conductive path.
    Surface treatment: PCB surface is treated, such as tin plating, gold plating, etc., to protect the copper foil and improve welding performance.

    Kow long it takes to get pcb board from manufacturing

    how long it takes to get pcb board from manufacturing?The time to manufacture a PCB depends mainly on the number of layers and complexity of the PCB.

    ‌Double-sided board‌: Prototyping usually takes 1-3 days, and mass production takes about 5 days‌.
    ‌4-6 layer board‌: Prototyping takes 2-4 days, and mass production takes 5-10 days.
    ‌8-layer board‌: Prototyping takes about 3-5 days, and mass production takes 7-15 days

    How much does it cost to manufacture a pcb board

    how much does it cost to manufacture a pcb board?The price of PCB boards varies depending on many factors, including the number of layers on the board, special requirements, quantity, etc.

    Main factors affecting the price
    ‌ Number of layers of the board‌: The more layers, the higher the price. For example, the price difference between a double-sided board and a four-layer board is large‌.
    ‌ Special requirements‌: Special materials, processes, or designs will increase the cost‌.
    ‌ Quantity‌: When the order quantity is large enough, the unit price may be reduced or even exempted from additional fees‌.
    ‌ Proofing quantity‌: The more proofing quantity, the lower the unit price‌.

    What is a bom in pcb manufacturing and design

    what is a bom in pcb manufacturing and design?BOM (Bill of Materials) is a technical document that describes the composition of a company’s products. It lists in detail the raw materials, parts, components, etc. required for the product, and indicates their quantity, specifications, etc. BOM plays a vital role in the manufacturing and design process.

    What is design for manufacturability dfm for pcb’s

    what is design for manufacturability dfm for pcb’s?DFM inspection refers to a comprehensive inspection of the design files after the PCB design is completed to ensure that the design meets the manufacturing process and requirements. The main purpose of DFM inspection is to find and solve problems in the design to ensure the manufacturability and reliability of the product.

    Component layout: Check whether the layout of components is reasonable.
    ‌Line width and line spacing: Ensure that the line width and line spacing meet the manufacturing requirements.
    ‌Impedance control: Check whether the impedance control is accurate.

    Through reasonable DFM design and DFM inspection, the manufacturing performance of the product can be improved, the production cost can be reduced, the product quality and reliability can be improved, and the product development cycle can be shortened. Therefore, in PCB design, the role of DFM should be fully valued and incorporated into the design process to achieve better product design and manufacturing effects.

    DFM has the following important significance in PCB design:

    ‌Reducing costs: Through reasonable DFM design, the scrap rate in the production process can be reduced, the production efficiency can be improved, and the production cost can be reduced.
    ‌Improving quality and reliability: By optimizing the layout and design, reducing electromagnetic interference, signal crosstalk and other problems, and improving the performance and reliability of the product.
    ‌Shortening the development cycle: Taking into account the manufacturing process and requirements in the design stage can avoid later modifications and adjustments and increase the speed of product launch.

    FAQ About PCB

    Do you have the ability to place bare dies on FR2?
    It’s no problem for us to place bard dies on FR2, wire bonding and seal with glob top. Please send us details such as: IC type (CMOS, TTL, etc), Wire type & diameter, glue type (conductive or non-conductive), products on high or low cost market. Etc. And our Metal dome is okay on FR2 as well.

    What is the minimum copper thickness you can produce?
    We can produce a minimum copper thickness of 1oz (18um).

    How do you apply solder paste during production?
    Solder paste is applied using stencil printing after silkscreening. The temperature for reflow soldering is set between 150-180°C.

    Do you have your own factory? Are you an OEM?
    Yes, we have our own SMT factory.

    What material is smt stencil made of?
    The edges of the SMT stencil are usually made of hollow aluminum frames (unless there are special customer requirements).

    How much area can you produce daily?
    Approximately 500 square meters per day.

    What is the maximum board thickness you can produce?
    The maximum thickness we can produce is 10mm.

    What is the minimum stencil thickness you can make?
    0.08mm, 0.10mm, 0.12mm

    What is the minimum distance from the hole to the PCB?
    0.25mm

    What thermal conductive materials do you provide?
    We use RS-2000 5GLM from Taiyo for thermal conductivity.

    What Does CPR Stand for on a PCB?

    December 4th, 2024

    If you’ve come across the term CPR on a PCB, you might be wondering what it means. While it’s not as commonly known as terms like VCC or GND, CPR plays an important role in many circuit designs. Depending on the context, CPR can have different meanings. In this blog, we’ll explore the meaning of CPR on a PCB, its typical applications, and how it impacts circuit performance.

    What Does CPR Stand for on a PCB?

    What Does CPR Stand for on a PCB?

    On a PCB, CPR most commonly stands for Current Path Resistor. This component is used to control or monitor the flow of current through specific parts of a circuit. It can help protect sensitive components by limiting the current or providing a voltage drop where needed.

    In some cases, CPR might also stand for:

    • Charge Pump Resistor – In voltage conversion circuits, a CPR is used to manage the charge and discharge cycles of capacitors like DC-DC converters. This is mainly used to ensure efficient voltage boosting or regulation
    • Component Placement Reference – In some PCB designs, CPR may simply be a reference label used to identify a specific resistor during assembly or testing.

    What is a Current Path Resistor (CPR)?

    A Current Path Resistor is a resistor placed strategically in a circuit to control the flow of current. It acts as a safeguard by limiting the current that can pass through, protecting downstream components from damage due to excessive current.

    Functions of a Current Path Resistor:

    • Current Limiting: By introducing resistance, the CPR ensures that the current stays within safe limits, preventing overcurrent damage.
    • Voltage Division: It can create a voltage drop that is proportional to the current, which is useful in voltage division circuits.
    • Current Sensing: In some applications, the voltage drop across the CPR is measured to monitor or control the current flow in real-time.

    For example, in LED circuits, a CPR is often used to limit the current flowing through the LEDs, ensuring they operate within their rated specifications.

    How Does a Current Path Resistor Work?

    A current path resistor works by offering resistance to the current flowing through a specific circuit path. By doing so, it limits the current to a safe level for downstream components.

    For example, in power distribution circuits, the CPR helps:

    • Prevent excessive current from damaging components.
    • Maintain consistent current levels across multiple branches of the circuit.
    • Provide a measurable voltage drop that can be used for current sensing.

    Current path resistor is an important component in power management and protection circuits.

    How to Identify CPR on a PCB?

    Identifying the CPR on a PCB can be straightforward if you know where to look. Here are some tips:

    1. Check the Silkscreen: Most PCBs have a silkscreen layer that labels components with their designators. Look for labels like CPR, R, or specific numbers (e.g., R15) near resistors.

    2. Refer to the Schematic: The circuit schematic provides detailed information about the components, including their placement and function.

    3. Use a Multimeter: If you suspect a resistor is the CPR but it’s not labeled, you can use a multimeter to measure its resistance and compare it with the schematic values.

    What Does CPR Stand for on a PCB?

    4. Look for Nearby Components: CPRs are often placed near components they protect or control, such as LEDs, capacitors, or ICs.

    Common Applications of CPR in Electronics

    CPRs are used in a variety of applications across different types of electronic devices. Their ability to control current and voltage makes them essential in many circuit designs, including:

    • Power Management Circuits

    CPRs help manage the distribution of power across different sections of a circuit, ensuring that each section receives the correct amount of current.

    • Current Sensing Modules

    In current sensing circuits, the voltage drop across the CPR is measured to determine the current flowing through the circuit. This information can be used for monitoring or control purposes.

    • Overcurrent Protection

    CPRs are often used in protection circuits to prevent overcurrent conditions from damaging sensitive components.

    • LED Lighting Systems

    In LED circuits, CPRs limit the current flowing through the LEDs, preventing them from burning out and ensuring consistent brightness.

    • Voltage Conversion Circuits

    Charge pump circuits, which require precise timing and current control, rely on CPRs to maintain stable and efficient operation.

    How to Choose the Right CPR for Your Circuit?

    Selecting the right CPR for your circuit is crucial for ensuring optimal performance and reliability. Here are some factors to consider:

    • Resistance Value: Choose a resistor with the appropriate resistance value to achieve the desired current limit or voltage drop.
    • Power Rating: Ensure the resistor can handle the power dissipation without overheating or failing.
    • Tolerance: Select a resistor with a tight tolerance if precise current control is required.
    • Temperature Coefficient: Consider the resistor’s temperature coefficient if the circuit will operate in varying temperature conditions.

    The term CPR on a PCB might not be as widely recognized as other designations, but it plays a significant role in circuit performance and reliability. Whether it stands for Current Path Resistor or other terms, understanding its function can help you design better circuits and troubleshoot issues more effectively.

    At Best Technology, we specialize in providing high-quality PCBs tailored to your specific needs. From design to manufacturing, our team ensures that every component, including CPRs, is optimized for performance and reliability. Contact us today to learn how we can help with your next project.