pcb
Home > Blog

Posts Tagged ‘MCPCB’

What is aluminum pcb depaneling?
Friday, October 11th, 2024

In the electronic manufacturing process, it is usually necessary to divide a large area of ​​aluminum-based PCB into multiple small pieces so that they can be installed in different electronic devices. Different electronic devices have different requirements for the size of PCBs. Through depaneling, large-area aluminum-based PCBs can be cut into sizes suitable for specific electronic devices.

What is the meaning of depaneling?

Aluminum PCB depaneling refers to cutting multiple circuit boards arranged in a row from a large board into separate small boards. This process is to divide a large aluminum printed circuit board (PCB) into multiple independent and fully functional circuit boards for subsequent assembly and use.

What is aluminum pcb depaneling?

Aluminum PCB depaneling is an important link in the production process of electronic devices, which can improve production efficiency and circuit board flexibility.

What are the methods of PCB depaneling?

There are many ways to depanel aluminum PCBs. Common depaneling methods include:

  • 1. ‌V-cut depaneling‌: Use a V-shaped blade to cut a V-shaped groove on the PCB board, and then separate the aluminum PCB along the groove by external force. This method is suitable for smaller aluminum PCB boards and fine dividing lines.
  • 2. ‌Sawtooth depaneling‌: Cut the aluminum PCB board with a sawtooth cutting tool to form multiple small panels, and then separate the panels by pressure or vibration. This method is suitable for aluminum PCB boards with larger areas.
What is aluminum pcb depaneling?
  • 3. ‌Laser depaneling‌: Use a high-energy-density laser beam to accurately cut the aluminum PCB, which is suitable for production environments with high precision requirements and high efficiency.
  • 4. ‌Chemical corrosion depaneling‌: Corrode the aluminum PCB with a chemical corrosive agent to form a dividing line, and then separate the panels by physical methods.

What is the process of depaneling PCB?

The aluminum PCB depaneling process varies depending on the depaneling method. The common aluminum PCB depaneling methods and processes are as follows:

Manual depaneling

  • Preparation: Check whether the aluminum PCB board meets the conditions for manual depaneling, such as confirming that there are no stress-sensitive components such as SMD (Surface Mounted Devices) on the board, and prepare suitable fixtures and operating space.
  • Positioning and fixing: Place the aluminum PCB concatenated or assembled boards that need to be separated on a stable workbench and fix them with fixtures to ensure that the boards do not move during the separation process. For aluminum PCB boards with V-grooves, align the V-grooves with the direction that is convenient for force application, and ensure that the board is placed in the correct direction and position to facilitate the separation operation.
  • Separation operation: The operator uses both hands or simple tools (such as tweezers, etc., and small cutting tools may be used in some special cases, but they must be operated with caution to avoid damaging the board) along the V-groove to break or separate the aluminum PCB board into individual small boards with appropriate force. During the operation, pay attention to controlling the force and direction to avoid damage to the board due to uneven force or wrong direction.
What is aluminum pcb depaneling?

V-cut board separation machine separation

  • Equipment debugging: Turn on the power of the V-cut board separation machine, and adjust the upper guide knife position and lower knife height of the board separation machine according to the thickness of the aluminum PCB board, the depth and width of the V-groove and other parameters to ensure that the spacing between the upper and lower knives is appropriate and the aluminum PCB board can be accurately cut.
  • Upper board positioning: carefully place the aluminum PCB board with V groove on the workbench of the V-cut board splitter, ensure that the V groove of the aluminum PCB board fits tightly with the lower knife of the board splitter, and the position of the board is accurate to avoid deviation during the cutting process.
  • Board splitting operation: start the V-cut board splitter manually, electrically or pneumatically, so that the blade cuts along the V groove of the aluminum PCB board. During the cutting process, pay attention to the cutting situation to ensure that the cutting depth is moderate and will not cause over-cutting or incomplete cutting of the aluminum PCB board.

What is the manufacturing process of aluminum PCB?

The manufacturing process of aluminum substrate PCB mainly includes the following steps: cutting, drilling, dry and wet film imaging, etching, surface treatment and final inspection. ‌

  • 1. Cutting: Cut the large-sized incoming materials into the size required for production, pay attention to the protection of the aluminum and copper surfaces, and avoid scratches and board edge delamination.
  • 2. Drilling: Position the holes in the board to ensure the correct number and size, and avoid scratches on the board and deviation of the hole position.
  • 3. Wet and dry film imaging: Present the parts required for making the circuit on the board, and pay attention to whether the circuit is open and whether the alignment is deviated after development.
  • 4. Etching: Remove the uncovered parts to form the circuit pattern, and pay attention to the quality and stability of the circuit after etching.
  • 5. Surface treatment: Perform necessary surface treatment on the circuit board, such as tin spraying, to improve the performance and appearance of the circuit board.
  • 6. Final inspection: Perform a final inspection on the completed circuit board to ensure that the quality meets the requirements.

What are the advantages of aluminum PCB?

The main advantages of aluminum substrate PCB include:

  • Excellent heat dissipation performance: The aluminum substrate uses high thermal conductivity aluminum alloy as the core material, which can quickly conduct and dissipate heat, thereby effectively reducing the operating temperature of components.
  • ‌Lightweight design‌: Compared with traditional FR4 substrates, aluminum substrates have lighter weight, which is particularly important in weight-sensitive fields such as aerospace and automobiles, helping to reduce the weight of the overall equipment and improve energy efficiency and operating performance‌.
What is aluminum pcb depaneling?
  • ‌Good mechanical properties‌: Aluminum substrates have high strength and hardness, providing good support and protection for electronic components. At the same time, its excellent impact resistance and vibration resistance enable it to adapt to various complex working environments and ensure the stable operation of the equipment‌.
  • ‌Excellent electrical performance‌: Aluminum substrates have excellent insulation and voltage resistance, which can meet the electrical requirements of electronic equipment in various working environments and provide stable electrical support for the equipment‌.
  • ‌Environmental protection‌: Aluminum substrates are made of environmentally friendly materials, there is no pollution in the production process, and waste is easy to recycle and dispose, which is fully in line with the current trend of green environmental protection‌.
  • ‌Diverse application forms‌: There are many types of aluminum substrates, including flexible aluminum substrates, hybrid aluminum substrates, multi-layer aluminum substrates, etc., suitable for different application needs.

What are the disadvantages of aluminum PCB?

The main disadvantages of aluminum PCB include high cost, difficult process, electrical strength and withstand voltage problems, mismatched thermal conductivity test, inconsistent material specifications, and more defective products. ‌

First, the price of aluminum PCB is relatively high, usually accounting for more than 30% of the product price. This is because the production of aluminum PCB requires the use of high-purity aluminum materials and special processing technology, all of which push up the cost. ‌

Second, the process of aluminum PCB is difficult, especially when it is made into a double-sided board, the process complexity is higher, and it is easy to have problems in electrical strength and withstand voltage. In addition, the mismatch of thermal conductivity test methods and results of aluminum PCB is also a problem. ‌

In addition, the material specifications of aluminum PCB have not yet been unified, and there are multiple standards such as CPCA industry standards, national standards, and international standards, which brings certain uncertainties to production and application. ‌

Why is aluminum no longer used in integrated circuits?

The main reason why aluminum is no longer used in integrated circuits is that copper has replaced aluminum as an interconnect metal material. Copper has lower resistivity and better anti-electromigration performance than aluminum, which makes copper more reliable and effective in high-speed integrated circuits. ‌

Specifically, aluminum may experience electromigration under long-term current, that is, aluminum atoms migrate inside the wire, causing the wire to break or form voids, which in turn causes the integrated circuit to fail. In addition, as the interconnection spacing decreases, the resistance of the aluminum wire increases and the capacitance between the wires increases, resulting in increased RC delay, which is not conducive to high-speed integrated circuits.

Copper has a lower resistivity than aluminum, can transmit current more efficiently, and can carry more current in thinner metal wires. Copper also has higher electromigration resistance than aluminum, making copper interconnects more reliable under high current conditions. These advantages make copper a preferred material for advanced integrated circuit technology.

Aluminum-based PCB depaneling is an important link in the electronic manufacturing process, which directly affects the quality and performance of electronic equipment. By selecting the appropriate depaneling method, controlling the depaneling accuracy, and avoiding damage to the PCB, the quality and efficiency of aluminum-based PCB depaneling can be effectively improved.

You may also like

What is an aluminum pcb? How is it made?
Friday, September 20th, 2024

In today’s era of rapid technological development, the performance and reliability of electronic equipment are attracting more and more attention. Among many electronic components, aluminum pcb have become an indispensable part of the electronics field with their excellent performance and wide application.

How do you make Aluminum PCB?

What is an aluminum pcb? How is it made?
  • 1. Cutting: Cut large-sized incoming materials into the size required for production. The process is picking materials-cutting.
  • 2. Drilling: Positioning and drilling holes in the plate to assist the subsequent production process and customer assembly. The drilling process is pinning-drilling-board inspection.
  • 3. Dry/wet film imaging: The part required for making the circuit is presented on the plate. The dry/wet film imaging process is grinding the plate-filming-exposure-development.
  • 4. Acid/alkaline etching: After dry/wet film imaging, the required circuit part is retained and the excess part outside the circuit is removed. The acid/alkaline etching process is etching-film stripping-drying-board inspection.
  • 5. Silkscreen solder mask and characters: solder mask is to protect the circuit that does not need soldering, preventing tin from entering and causing short circuit. Characters are used for marking. The silkscreen solder mask and character process is silkscreen – pre-baking – exposure – development – characters.
  • 6. V-CUT, gong board: V-CUT is to cut the single PCS circuit and the whole PNL board to leave a small part connected for easy packaging and removal. The gong board is to remove the excess part of the circuit board. The process of V-CUT and gong board is V-CUT – gong board – tearing the protective film – removing the flash.
  • 7. Test, OSP: Circuit test is to detect whether the completed circuit is working normally. Voltage resistance test is to detect whether the completed circuit can withstand the specified voltage environment. OSP allows the circuit to be better soldered. The test, OSP process is circuit test – voltage resistance test – OSP.
  • 8. FQC, FQA, packaging, shipment: FQC conducts full inspection and confirmation of the product, FQA conducts random inspection and verification, and packages and ships to customers as required. The process is FQC-FQA-packaging-shipping.

What are the layers of aluminum PCB?

Aluminum-based circuit boards (PCBs) mainly consist of three layers, namely the circuit layer (copper foil), the insulation layer, and the metal base layer. This structure gives aluminum-based PCBs excellent heat dissipation performance and mechanical strength, making them particularly suitable for applications that require efficient heat dissipation and good mechanical properties.

What is an aluminum pcb? How is it made?

The circuit layer is usually made of copper foil, which is etched to form a printed circuit for assembly and connection of devices. The thickness of the copper foil can be between 1oz and 10oz to ensure the conductivity and load-bearing capacity of the circuit.

The insulation layer is the core technology of aluminum-based PCBs. It uses low thermal resistance thermal insulation materials with a thickness of 0.003″ to 0.006″ inches and has good bonding, insulation and thermal conductivity.

The metal base layer is generally aluminum or copper, which has good thermal conductivity and certain mechanical strength. It can quickly conduct the heat generated during device operation, effectively reduce the operating temperature of the device, and improve the power load and reliability of the module.

In addition, according to the specific application requirements, aluminum clad PCB can be designed as single-sided board, double-sided board or very few multi-layer boards. Single-sided board consists of three-layer structure, while double-sided board adds a circuit layer on this basis, forming a structure of circuit layer, insulation layer, aluminum base, insulation layer, circuit layer.

How thick is aluminum clad PCB?

The thickness of aluminum clad board usually ranges from 0.2mm to 10mm, and the specific choice depends on the number of layers and purpose of the circuit board.

0.2mm to 0.5mm aluminum clad board is suitable for making single-sided circuit boards, 0.5mm to 1.2mm is suitable for double-sided circuit boards, and 1.2mm to 2.0mm is suitable for multi-layer circuit boards.

In addition, common standard thicknesses also include 0.5mm, 1.0mm, 1.5mm, etc. For the PCB board itself, common thicknesses are 0.6mm, 1.0mm, 1.6mm, 2.0mm, 2.4mm, etc.

The standard PCB thickness ranges from 0.031 inches (0.78 mm), 0.062 inches (1.57 mm), and 0.093 inches (2.36 mm), with the most commonly used thickness being 0.063 inches (1.57 mm or 157 mm).

The thickness of conventional PCB finished products is generally between 0.8 mm and 1.6 mm, with 1.6 mm being the most common specification‌.

What are aluminum PCBs used for?

Aluminum substrate PCB (aluminum PCB) is a metal-based copper-clad board with good heat dissipation function. It consists of a circuit layer (copper foil), an insulating layer and a metal base layer. Sometimes it is also designed as a double-sided board or a multi-layer board structure.

The application of aluminum substrates is very wide, covering multiple fields and equipment, mainly including:

  • 1. Audio equipment: used for input and output amplifiers, balanced amplifiers, audio amplifiers, preamplifiers, power amplifiers, etc.
  • 2. Power supply equipment: including switching regulators, DC/AC converters, SW regulators, etc.
  • 3. Communication electronic equipment: suitable for high-frequency amplifiers, filtering appliances, signal transmission circuits, etc.
  • 4. Office automation equipment: such as motor drives, etc.
  • 5. Automotive electronics: used in electronic regulators, igniters, power controllers, etc.
  • 6. Computers: including CPU boards, floppy disk drives, power supply equipment, etc.
  • 7. Power modules: such as inverters, solid-state relays, rectifier bridges, etc.
  • 8. Lamps and lighting: As an advocate of energy-saving lamps, aluminum substrates are increasingly used in various color energy-saving LED lamps.
What is an aluminum pcb? How is it made?

Aluminum substrate PCBs are particularly favored in high-end electronic devices due to their excellent heat dissipation performance and reliability, and are widely used in various occasions that require efficient heat dissipation.

What are the disadvantages of aluminum PCB?

The main disadvantages of aluminum PCBs include high cost, usually only single-sided panels can be made, electrical strength and withstand voltage are more prone to problems, thermal conductivity test methods and test results are not matched, aluminum substrate material specifications are not unified, copper foil thickness does not meet the standard, and there are more defective products and shoddy work. ‌

  • 1. High cost: The price of aluminum substrates usually accounts for more than 30% of the product price, which is significantly higher than other types of PCBs.
  • 2. Production limitations: Aluminum substrates can usually only produce single-sided boards, and the process of producing double-sided boards is more difficult, which limits their use in some applications.
  • 3. Electrical strength and withstand voltage issues: Aluminum substrates are more prone to problems in electrical strength and withstand voltage, which may affect the safety and reliability of the product.
  • 4. Thermal conductivity test and material specification issues: The mismatch between the test methods and test results of thermal conductivity, as well as the lack of unified material specifications for aluminum substrates (there are CPCA industry standards, national standards, and international standards, etc.), all increase the complexity of production and quality control.
  • 5. Copper foil thickness and defective products: Failure to meet the copper foil thickness standards may lead to problems such as burning circuits. At the same time, due to cutting corners and increasing defective products, the quality control of aluminum substrates has become more difficult.

These shortcomings limit the application scope of aluminum substrates to a certain extent and increase the risks of production and use. Therefore, when choosing to use aluminum substrates, it is necessary to comprehensively consider their advantages and disadvantages, as well as specific application requirements and environmental conditions.

What temp can aluminum PCB withstand?‌

The high temperature resistance of aluminum substrates is related to the materials used, manufacturing process and working environment. Under normal circumstances, aluminum substrates can withstand a wide range of temperatures, but the specific temperature resistance is also affected by factors such as solder paste and lamp quality.

The temperature that aluminum substrates can withstand during welding can reach about 400 degrees Celsius, and the welding time is about 30 seconds to 50 seconds, of which the actual melting time is only 10 seconds, which shows that aluminum substrates can withstand higher temperatures in a short period of time without damaging the components.‌

In addition, aluminum substrates, like other types of PCB boards (such as FR4 boards, copper substrates, etc.), can withstand an ambient temperature range of -40℃ to +150℃.

However, in long-term use, the highest temperature that these boards can withstand is between 120℃ and 130℃‌. This shows that although aluminum substrates and other types of PCB boards can work in a wide temperature range, their performance and life will be affected to a certain extent when working in a high temperature environment for a long time.

In short, as an important component in the field of electronics, aluminum substrates have excellent performance and broad application prospects. I believe that in the future, with the continuous advancement of technology, aluminum substrates will play a more important role in the field of electronics.

You may also like

What is MCPCB? Its function and performance
Friday, September 6th, 2024

MCPCB (Metal Core Printed Circuit Board) is a key component in modern electronics, especially in terms of heat management. It is widely used in LEDs and can be found in almost all LED products. From LED applications to power electronics, MCPCB plays a vital role in ensuring that devices remain cool, efficient and long-lasting.

What is MCPCB?

‌MCPCB‌, full name Metal Core PCB, is also known as aluminum substrate or aluminum-based circuit board. It is a type of circuit board that attaches the original printed circuit board to a metal with better thermal conductivity to improve the heat dissipation performance at the circuit board level.

What is MCPCB? Its function and performance

This metal-based printed circuit board usually uses aluminum as the substrate, but also includes the use of other metals such as copper or other high thermal conductivity materials. The design of MCPCB combines the high thermal conductivity of metal with the flexibility of printed circuit boards, making it widely used in various industrial electronic devices.

Especially in the LED industry, MCPCB has become an indispensable component due to its strong magnetic conductivity and excellent heat dissipation. In addition, in the production process of MCPCB, in addition to using aluminum substrates, fiberglass boards (FR-4) are also used for some designs, but special heat dissipation pads need to be designed and fixed by screws or glue.

What is the use of MCPCB?

The main use and advantage of MCPCB (metal core printed circuit board) lies in its excellent heat dissipation performance. ‌

MCPCB, full name Metal Core PCB, is a printed circuit board attached to a metal with better heat conduction effect, thereby improving the heat dissipation at the circuit board level.

This design not only improves the heat dissipation performance of the circuit board, but also has some specific application restrictions, such as the temperature cannot exceed 140℃ when the circuit system is operating, which is determined by the characteristic limitations of the dielectric layer.

During the manufacturing process, the temperature must not exceed 250℃~300℃, which must be understood in advance before passing the tin furnace. This design of MCPCB makes it widely used in many fields, including but not limited to:

‌LED lights‌: used for spotlights, high-current PCBs, high-current LEDs, street safety applications, etc.

What is MCPCB? Its function and performance

‌Automotive electronics‌: used in power conditioners, ignition tools, switching converters, variable optical systems, and motors for electric and hybrid vehicles.

‌Power supply equipment‌: such as DC-DC converters, voltage regulators, high-density power conversion, and switching regulators.

‌Audio equipment‌: balanced, input-output, audio, power supply, and pre-shielded amplifiers.

‌Home appliances‌: flat panel displays, motor controls, etc.

‌OA equipment‌: large electronic display substrates, thermal print heads, and printer drivers.

The unique combination of MCPCB (metal plate, insulation layer, and additional copper foil) provides strong magnetic conductivity and excellent heat dissipation, which is particularly important in the LED industry.

In addition, the high thermal conductivity of MCPCB allows the generated heat to dissipate quickly, preventing heat accumulation and ensuring that the LED operates within the optimal temperature range, which plays an important role in improving the performance, thermal management, and overall reliability of UV LEDs.

What is the difference between FR4 and MCPCB?

The main difference between FR4 and MCPCB (metal matrix printed circuit board) is their heat dissipation performance, material composition, and application areas. ‌

1. Heat dissipation performance:

FR4 has a low thermal conductivity and its heat dissipation performance is not as good as MCPCB. MCPCB is based on its metal core (usually aluminum or copper), and transfers heat to the heat sink through the thermal conductive dielectric layer and the metal substrate, and has good heat dissipation ability.

2. Material composition:

FR4 is a multi-layer printed circuit board material composed of glass fiber cloth and epoxy resin. It has good electrical and mechanical processing performance, but general heat dissipation performance.

MCPCB attaches the original printed circuit board to a metal with better thermal conductivity. The design of the metal substrate and the thermal conductive dielectric layer significantly improves the heat dissipation efficiency.

3. Application field:

FR4 is widely used in electronic equipment that requires basic heat dissipation requirements due to its low cost and good electrical performance.

MCPCB is often used in high-power, high-heat-intensive application scenarios due to its excellent heat dissipation performance, such as TVs, monitors and other cost-sensitive products.

In summary, MCPCB has better heat dissipation performance than FR4 through its metal substrate and optimized thermal conductivity design, and is particularly suitable for application scenarios that require high-performance heat dissipation.

What is the structure of MCPCB?

The structure of MCPCB consists of a circuit layer (copper foil layer), a thermal insulation layer and a metal base layer. ‌

‌Circuit layer‌ (copper foil layer): It requires a large current carrying capacity, so thicker copper foil should be used, and the thickness is generally between 35μm~280μm.

‌Thermal insulation layer‌: This is the core technology of PCB aluminum substrate, usually composed of special polymers filled with special ceramics, with low thermal resistance, excellent viscoelastic properties and resistance to thermal aging, and can withstand mechanical and thermal stress.

‌Metal base layer‌: Aluminum or copper metal is used as the base material of the circuit board, and a layer of copper foil or copper plate metal plate is attached to the substrate as a circuit to improve problems such as poor heat dissipation.

How thick is the copper in MCPCB?

The thickness of copper foil in MCPCB is generally 35μm~280μm. ‌

The structure of MCPCB (Metal Core PCB) consists of circuit layer (copper foil layer), thermal conductive insulation layer and metal base layer. The circuit layer requires a large current carrying capacity, so thicker copper foil should be used.

Such thickness can meet the demand of high current carrying capacity. The use of such copper foil guarantees the superiority of MCPCB in electrical performance and thermal conductivity.

What is the thermal conductivity of MCPCB?

The thermal conductivity of MCPCB varies with the materials used, but is generally much higher than that of standard FR4 PCB. Most MCPCBs have a thermal conductivity in the range of 1 W/mK to 5 W/mK. In contrast, the thermal conductivity of FR4 boards is about 0.3 W/mK, which makes them much less efficient in heat dissipation.

The advantage of MCPCB is that its heat dissipation performance is significantly better than that of standard FR-4 structure. This advantage is not only reflected in the thermal conductivity of the dielectric used, which is far higher than that of conventional epoxy glass, but also in its heat transfer efficiency, with a thermal transfer index of one-tenth the thickness being more efficient than that of traditional rigid PCB.

What is MCPCB led?

MCPCB LED refers to a light-emitting diode (LED) that uses a metal core printed circuit board (MCPCB) as a heat dissipation substrate. This technology uses a metal core printed circuit board as a heat dissipation substrate for LEDs to improve the heat dissipation performance of the LED, thereby ensuring stable operation and extending the service life of the LED.

What is MCPCB? Its function and performance

MCPCB is a special printed circuit board in which the metal core acts as a thermal conductive layer, which can effectively conduct the heat generated by the LED to avoid overheating that affects the performance and life of the LED.

In addition, the design and manufacture of MCPCB also consider the needs of electrical connections and physical support to ensure the reliability and stability of the LED module. With the increasing application of high-power LEDs, MCPCB technology has been favored for its excellent heat dissipation performance and has become one of the key technologies in high-power LED packaging.

Conclusion:

MCPCB has a unique structure, including a conductive metal base, a dielectric insulation layer, and a copper circuit layer, which can provide a reliable solution to the heat dissipation challenges in modern electronic products. As the demand for high-performance electronic products continues to grow, the demand for advanced materials such as MCPCB will also continue to grow to meet these thermal management challenges.

You may also like

Aluminum Printed Circuit Board Design&Prototyping
Monday, September 2nd, 2024

As a leading aluminum printed circuit boards manufacturer with over 18 years experience, we provide full turn-key service for all the world. In our aluminum base print circuit boards factories, we equipped with advanced high precision manufacturing and testing equipment to ensure the high quality and fast delivery.

What is Aluminum Printed Circuit Board

Aluminum printed circuit board is a metal-based copper-clad board with good heat dissipation function. Generally, a single-sided board consists of three layers, namely the circuit layer (copper foil), the insulation layer and the metal base layer. There are also designs for high-end use as double-sided boards, with the structure of circuit layer, insulation layer, aluminum base, insulation layer, and circuit layer. Very few applications are multi-layer boards, which can be made of ordinary multi-layer boards, insulation layers, and aluminum bases.

LED aluminum printed circuit boards are just circuit boards made of aluminum alloy. In the past, our general circuit boards were made of fiberglass, but because LEDs generate a lot of heat, the circuit boards used for LED lamps are generally aluminum printed circuit boards, which can conduct heat quickly. The circuit boards used for other equipment or electrical appliances are still fiberglass boards!


What are the advantages of aluminum PCB?

  1. Heat dissipation
    Many double-sided boards and multi-layer boards have high density and high power, and it is difficult to dissipate heat. Conventional printed circuit board substrates such as FR4 and CEM3 are poor conductors of heat, with insulation between layers, and heat cannot be dissipated. If local heating of electronic equipment is not eliminated, electronic components will fail at high temperatures, and aluminum printed circuit boards can solve this heat dissipation problem.
  2. Thermal expansion
    Thermal expansion and contraction are the common nature of materials, and the thermal expansion coefficients of different materials are different. Aluminum-based printed circuit boards can effectively solve the heat dissipation problem, thereby alleviating the thermal expansion and contraction problems of different materials of components on the printed circuit board, and improving the durability and reliability of the whole machine and electronic equipment. In particular, it solves the thermal expansion and contraction problems of SMT (surface mount technology).
  3. Dimensional stability
    Aluminum-based printed circuit boards are obviously much more stable in size than printed circuit boards made of insulating materials. Aluminum-based printed circuit boards and aluminum sandwich panels, heated from 30℃ to 140~150℃, have a dimensional change of 2.5~3.0%.
  4. Other advantages
    Aluminum-based printed circuit boards have a shielding effect; high strength, replacing brittle ceramic substrates; ease of use, safe use of surface mounting technology; reducing the truly effective area of ​​the printed circuit board; replacing components such as radiators, improving product heat resistance and physical properties; reducing production costs and labor.

How does an aluminum PCB work?

‌The working principle of aluminum printed circuit boards mainly relies on its unique three-layer structure: circuit layer (copper foil), insulation layer and metal base layer. This structure enables aluminum printed circuit boards to have good heat dissipation function.

Specifically, the power device is mounted on the circuit layer. When the device is running, the heat generated is quickly transferred to the metal base layer through the insulation layer, and then the metal base layer transfers the heat away, thereby achieving effective heat dissipation of the device. This design enables aluminum printed circuit boards to significantly reduce thermal resistance, provide excellent thermal conductivity, and maintain excellent mechanical properties.

Aluminum printed circuit boards also comply with RoHS requirements and are more suitable for SMT processes. In the circuit design scheme, heat diffusion is extremely effectively processed, the module operating temperature is reduced, the service life is extended, and the power density and reliability are improved. By reducing the configuration of heat sinks and other hardware, aluminum printed circuit boards can also reduce product size, reduce hardware and assembly costs, and optimize the combination of power circuits and control circuits.

Types of printed circuit board aluminum

‌The classification of aluminum printed circuit boards mainly includes flexible aluminum printed circuit boards, hybrid aluminum printed circuit boards, multi-layer aluminum printed circuit boards and through-hole aluminum printed circuit boards.
‌1. Flexible aluminum printed circuit boards ‌
Utilize flexible dielectric materials to provide excellent electrical insulation, flexibility and thermal conductivity, suitable for a variety of shapes and angles, and eliminate the need for expensive fixtures, cables and connectors.
‌2. Hybrid aluminum printed circuit boards ‌
In a “hybrid” IMS structure, “sub-assemblies” of non-thermal substances are processed independently and then bonded to an aluminum substrate using thermal materials. Common structures are 2-layer or 4-layer sub-assemblies made of FR-4, bonded to an aluminum substrate with thermal dielectrics, which helps dissipate heat, improve rigidity and act as a shield.
‌3. Multi-layer aluminum printed circuit boards ‌
In the high-performance power supply market, it is made of multi-layer thermally conductive dielectrics, with one or more layers of circuits buried in the dielectric, and blind holes are used as thermal vias or signal paths to provide effective heat dissipation solutions for complex designs.
‌4. Through-hole aluminum printed circuit boards‌
Before lamination, the aluminum is plated and filled with dielectric, thermal materials or sub-components are laminated to both sides of the aluminum using thermal bonding materials, and plated through holes pass through the gaps in the aluminum to maintain electrical insulation.

Aluminum PCB Structure

  1. Circuit layer
    The circuit layer (generally electrolytic copper foil) is etched to form a printed circuit for assembly and connection of devices. Compared with traditional FR-4, with the same thickness and line width, aluminum printed circuit boards can carry higher currents.
  2. Insulation layer
    The insulation layer is the core technology of aluminum printed circuit boards, which mainly plays the role of bonding, insulation and heat conduction. The insulation layer of aluminum printed circuit boards is the largest thermal barrier in the power module structure. The better the thermal conductivity of the insulation layer, the more conducive it is to the diffusion of heat generated by the device during operation, and the more conducive it is to reduce the operating temperature of the device, thereby achieving the purpose of increasing the power load of the module, reducing the volume, extending the life, and increasing the power output.
  3. Metal base
    The type of metal used for the insulated metal substrate depends on the comprehensive consideration of the thermal expansion coefficient, thermal conductivity, strength, hardness, weight, surface state and cost of the metal substrate.

Aluminum Printed Circuit Board Process

Material: Aluminum printed circuit board is a heat dissipation material with excellent thermal conductivity. Aluminum alloy materials with high thermal conductivity, high strength and good corrosion resistance are usually selected. Choosing the right substrate material has a very important influence on the stability and heat dissipation performance of aluminum printed circuit boards.

‌Cutting‌: Cut the substrate into plates of appropriate size and into the shape of the entire circuit board. Cutting methods include laser cutting, mechanical cutting, etc. After cutting, it needs to be polished to meet the requirements of the next drilling.

Grinding‌: Grinding is to form a smooth surface on the substrate material and facilitate the next drilling operation. Factors affecting the grinding effect include the type and accuracy of the tool, the type and concentration of the grinding fluid, the pressure, etc.

Drilling‌: Drilling is to form wiring holes for components on the circuit board. Most of them are now using CNC drilling machines, which can make the drilling accuracy higher. Factors affecting the drilling quality include the material and geometric characteristics of the drill bit, the drilling speed, the drilling depth, and the drilling position accuracy.

Chemical treatment: Chemical treatment is an extremely important step in the manufacturing process of aluminum printed circuit boards. The appropriate circuit layer structure is prepared by etching, copper plating, surface treatment and other methods. This step requires strict control of parameters such as the concentration, temperature and time of the corrosive agent and electrolyte to obtain the required surface structure and quality.

Copper plating: Copper plating is to form a copper layer that connects the circuit and the ground wire, usually using methods such as chemical copper plating. Adverse factors of copper plating include uneven copper layer, excessive roughness, pinholes, and deformation of the copper layer.

Welding: Welding is a necessary step to directly solder electronic devices to aluminum printed circuit boards. Welding methods include manual welding and automated welding. During the welding process, the welding temperature, time and welding quality need to be strictly controlled to ensure reliable solder joints.

What is the thermal conductivity of aluminum PCB?

‌‌The thermal conductivity of aluminum printed circuit boards refers to the amount of heat transferred by a material per unit time and per unit area, usually expressed in W/m·K. The difference between 1.0, 1.5, and 2.0 thermal conductivity.

‌1.0 W/m·K‌: The insulation layer of the general-purpose aluminum-based copper-clad laminate is composed of an epoxy glass cloth bonding sheet, which is suitable for the heat dissipation needs of general electronic products.
‌1.5 W/m·K‌: The insulation layer of the high-heat dissipation aluminum-based copper-clad laminate is composed of a high-thermal-conductivity epoxy resin or other resin, which is suitable for occasions requiring higher heat dissipation performance.
‌2.0 W/m·K‌: The insulation layer of the aluminum-based copper-clad laminate for high-frequency circuits is composed of a polyolefin resin or polyimide resin glass cloth bonding sheet.

What is the difference between aluminum PCB and FR4?

The main differences between aluminum printed circuit boards and FR-4 circuit boards are materials, thermal conductivity, mechanical properties, cost, and application areas. ‌

  • Materials‌:
    Aluminum printed circuit boards are mainly composed of aluminum alloys, and the surface is usually coated with an insulating layer with good thermal conductivity, such as aluminum oxide (Al2O3).
    The substrate of FR-4 circuit boards is a glass fiber reinforced epoxy resin, which is formed by impregnating glass fiber cloth with epoxy resin to form a composite material.
  • Thermal conductivity‌:
    Aluminum printed circuit boards have good thermal conductivity and are suitable for applications with high heat dissipation requirements, such as LED lighting and electronic power supplies.
    FR-4 circuit boards have relatively poor thermal conductivity and are usually used in general electronic devices, not suitable for scenarios with high heat dissipation requirements.
  • Mechanical properties‌:
    Aluminum printed circuit boards are relatively hard and have good mechanical properties, and are suitable for applications that require a certain mechanical strength.
    FR-4 circuit boards are relatively soft and easy to process, but may not be as good as aluminum printed circuit boards in terms of mechanical strength.
  • Cost‌:
    Due to the high manufacturing process and material costs of aluminum printed circuit boards, the cost of aluminum printed circuit boards is relatively high.
    FR-4 circuit boards have relatively low manufacturing processes and material costs, and are usually an affordable choice.
  • Application areas:
    Aluminum printed circuit boards are mainly used in applications that require good heat dissipation performance, such as LED lamps, power modules, automotive electronics, etc.
    FR-4 circuit boards are suitable for general electronic products, such as computer hardware, communication equipment, consumer electronics, etc.

What are aluminum PCBs used for?

  1. Audio equipment: input and output amplifiers, balanced amplifiers, audio amplifiers, preamplifiers, power amplifiers, etc.
  2. Power supply equipment: voltage stabilizers, regulators, DC-AC adapters, etc.
  3. Communication electronic equipment: high-frequency amplifiers, filter appliances, and transmission circuits.
  4. Office automation equipment: motor drivers, etc.
  5. Computers: power supply devices, floppy disk drives, motherboards, etc.
  6. Power modules: inverters, solid-state relays, rectifier bridges, etc.
  7. Electronic control: relays, transistor bases, and cooling of components in various circuits;
  8. Switches, microwaves: radiators, semiconductor device insulation heat conduction, motor controllers;
  9. Industrial vehicles: igniters, voltage regulators, automatic safety control systems, and lighting conversion systems;
  10. LED displays (two modes: LED display; display using LED light sources)
  11. Lamps and lighting: With the promotion of energy-saving lamps, various energy-saving and gorgeous LED lamps are very popular in the market, and aluminum printed circuit boards used in LED lamps have also begun to be used on a large scale.

Aluminum printed circuit boards supplier

As a leading aluminum printed circuit boards manufacturer with over 18 years experience, we provide full turn-key service for all the world. In our aluminum base print circuit boards factories, we equipped with advanced high precision manufacturing and testing equipment to ensure the high quality and fast delivery

Best Technology specializes in providing prototyping service of customized aluminum PCB solutions to meet the diverse needs of our clients. To make sure the one-time success of pcb prototyping, we proceed SI, PI, EMC, DFM analysis during the production. We are committed to be the most reliable aluminum printed circuit boards supplier in the world!

You may also like

What is MCPCB prototype circuit board?
Friday, August 16th, 2024

What is MCPCB prototype circuit board?

MCPCB prototype refers to the manufacture of a small number of sample PCB boards before formal mass production, and actual welding and testing to verify the correctness, performance and reliability of the design. This process is usually called “proofing” or “prototype production”. The main purpose of MCPCB prototype is to conduct trial production before mass production of circuit boards to ensure the feasibility of the design and the quality of the product. Through MCPCB prototype, design engineers can find and solve potential problems before actual production, thereby ensuring the performance and reliability of the final product.

What is MCPCB prototype circuit board?

Why do we need prototype model?

MCPCB prototypes are to verify the correctness and performance of the design and ensure the quality and reliability of the final product. ‌By making MCPCB prototypes, developers can better optimize product designs, discover potential problems and deficiencies through testing, and make targeted improvements and optimizations.
‌1. Verify the correctness of the design: By making sample boards for testing, design problems can be found, such as errors in component layout and line connection. By discovering problems in advance and making modifications, problems can be avoided during mass production, saving time and cost. ‌
‌2. Evaluate the performance of the circuit board: Through proofing tests, the working condition of the circuit board, signal transmission quality, power supply stability and other aspects can be checked to ensure the reliability and stability of the final product. ‌
‌3. Improve the manufacturing process: During the sample board production process, manufacturing problems can be found, such as poor pads and unreliable line connections, so as to adjust the manufacturing process and workflow in time to improve the overall manufacturing quality and efficiency.

What files are needed to MCPCB prototype ?

‌1. Gerber file: contains the layer information of PCB, such as pads, connections, jacks, etc., and is the basic file for PCB manufacturing.

  1. BOM (Bill of Materials) list: lists the detailed information of all components on the PCB, including component model, quantity, etc., for procurement and assembly.

‌3. Drilling file: contains the location and size information of all holes punched on the PCB, which is very important for the manufacturer to perform drilling processing.

‌4. Circuit diagram: provides the connection method of the design, which is very important for checking whether the connection of the design is correct.

‌5. Special layer file: If the design requires special processes, such as impedance control or metallized hole wall, the corresponding special layer file needs to be provided. ‌

★★Detailed explanation of the role and importance of each file:
★★Installation instructions and precautions: Provide detailed installation instructions, including information such as component direction and polarity, as well as the processing methods of special components
★★Material and thickness instructions: Specify the substrate material, plate thickness, copper foil thickness and other information used to ensure the accuracy of the production process.

What files are needed to MCPCB prototype ?

Prototype pcb manufacturing process

  1. Design phase:

Draw schematics: Use PCB design software (such as Altium Designer, Eagle, KiCad, etc.) to draw circuit schematics and perform error checking.

Generate PCB files: Generate PCB files based on schematics and component libraries, and set parameters such as number of layers, size, line width, and vias.

Export Gerber files and drill files: Gerber files describe PCB layers, and drill files describe via positions and sizes. These files are the main files required by board manufacturers.

  1. Production phase:

Place an order to make PCBs: Package and compress Gerber files and drill files, upload them to the website or software of the board manufacturer, and select appropriate parameters and quantities to place an order and pay.

Wait for delivery: The board manufacturer produces PCBs according to the order and sends them to customers by express delivery, which usually takes a few days to a week. ‌

  1. Subsequent processing (if SMT patch is required): ‌

Transform the schematic diagram and package library: Identify the component type and direction for the patch machine, and modify the schematic diagram and package library. ‌

Export SMT patch coordinate file and bill of materials (BOM): The SMT patch coordinate file describes the component position and angle, and the bill of materials describes the component type and quantity. ‌

  1. Order SMT patch: On the website or software of the board manufacturer, select whether SMT patch is required, and upload relevant files to place an order. ‌

Waiting for delivery: The patch manufacturer performs SMT patch according to the order and sends it to the customer by express delivery. ‌

Testing phase: Test with a flying probe tester to detect defects that affect functionality, such as open circuits and short circuits.

The difference between MCPCB prototype and copy board

The main differences between MCPCB prototypes and copy boards lie in the process flow, production cycle, cost, and applicable scenarios.

  1. Different process flow: Proofing is produced according to the design documents, usually through preparation, board making, drilling, plug-in, welding, coating and other process flows, and finally form a sample consistent with the design documents. Copy board is to reverse design and produce the existing PCB board, generally only need to carry out two process flows of plate making and etching.
  2. Different production cycle: Proofing has a longer production cycle, generally it takes 1-2 weeks to produce samples, mainly because it needs to go through multiple process flows, and the manufacturer needs to carry out strict quality control. Copy board production cycle is relatively short, generally only 3-5 days to produce a copy of the same effect as the original board.
  3. Different cost: Proofing costs are higher, because proofing requires multiple sample production and testing, plus the production cycle is longer, manufacturers need to invest more manpower and material resources. ‌
    ‌Copy board costs less, because it only needs to be reverse designed and produced once, and the production cycle is short, so the cost is lower. ‌
  4. Different applicable scenarios: ‌
    ‌Proofing is suitable for scenarios where the performance and reliability of PCB boards need to be verified and tested, such as the research and development stage of new products, verification of new technologies, etc. ‌
    ‌Copy board is suitable for scenarios where a large number of PCB boards consistent with the original need to be produced quickly, such as mass production, repair and replacement, etc. ‌

How much does a MCPCB prototype cost?

  1. Basic costs: including manufacturing costs, material costs and labor costs. Manufacturing costs include depreciation of production equipment and equipment maintenance costs; material costs mainly refer to the costs of PCB boards, and the prices of different types of boards vary greatly; labor costs include the labor costs of design, board making, welding and other processes. ‌
  2. Process costs: calculated according to the customer’s special requirements for PCB boards, such as multi-layer boards, blind holes, buried holes, impedance control and other advanced processes will increase costs. The more layers, the higher the manufacturing difficulty and cost; the processing of special holes requires more sophisticated equipment and technology, so it will increase costs; impedance control In order to meet the stability of signal transmission, impedance control of PCB boards is sometimes required, which will also increase certain costs.
  3. Logistics costs: mainly include express delivery costs and insurance costs. It is calculated based on the number and weight of PCB boards, as well as the distance between the place of shipment and the place of receipt. In order to ensure the safety of goods during transportation, customers can choose to purchase insurance, and this part of the cost will also be added to the proofing price.
  4. Other costs: including taxes, surcharges, etc. According to the tax laws of different countries and regions, customers may need to pay corresponding taxes; if customers require expedited services or special services, additional fees may be incurred.

Why do prototypes cost so much?

‌1. Material cost‌: Multilayer PCBs require more substrates and prepregs, and the quality of these materials directly affects the functionality and reliability of the circuit. Although using high TG (glass transition temperature) materials will increase costs, it can improve the stability of PCBs in high temperature environments. ‌
‌2. Manufacturing process‌: The production process of multilayer PCBs is more complicated, involving multiple pressing, drilling, and copper plating processes. ‌These steps require sophisticated equipment and technology, which pushes up production costs. ‌
‌3. Design complexity‌: The design of multilayer PCBs is usually more complex, involving more circuits and more compact spatial layout. Designers need to invest more time and energy in design optimization to ensure signal integrity and electromagnetic compatibility. ‌
‌4. Testing and verification‌: To ensure that the performance of multilayer PCBs meets the standards, rigorous testing and verification are required, including electrical testing, thermal stress testing, etc., which adds additional costs. ‌
‌5. Quantity and delivery time‌: The number of samples and the delivery time required by the customer will also affect the price. ‌Urgent orders often require additional expedited fees. ‌
‌6. Documentation and component research: The quantity and quality of documentation that may need to be completed to accompany the prototype build, and the manufacturer must update or create the necessary documentation to proceed with the build. Components in the design may need to be improved, and component engineers will need to spend time researching suitable alternatives. ‌
‌7. Engineering analysis: The design may be more conceptual rather than production-ready, requiring more engineering analysis to ensure that potential manufacturing errors have been corrected. ‌
‌8. Design and debug: It is often necessary to include more elements, such as design for assembly, design for test, and design for debug. Debugging design is essential in prototyping.

You may also like

What is the full form of MCPCB
Friday, August 16th, 2024

What is the full form of MCPCB

mcpcb full form is metal core printed circuit board
Attach the original printed circuit board to another metal with better heat conduction effect to improve the heat dissipation at the circuit board level. Metal-based PCBs usually consist of three layers: circuit layer (copper foil layer), thermal conductive insulation layer and metal base layer.

What is MCPCB

Metal Core PCB is a printed circuit board whose substrate uses metal material as a support layer or heat dissipation layer, usually an aluminum substrate or a copper substrate. It has excellent electrical conductivity and thermal conductivity.
Metal Core PCB is usually composed of a metal substrate, an adhesive and copper foil. It is characterized by high reliability, good heat dissipation, and is suitable for high-speed transmission and high-frequency circuits.

What is MCPCB

What is MCPCB

What is mcpcb led

Metal-based LED lamps are LED lighting fixtures that use metal-based circuit boards (MCPCBs) as light source boards. This type of circuit board, called aluminum-based copper-clad circuit boards (ALPCBs), has excellent thermal conductivity and high cost-effectiveness, and has rapidly become the first choice for light source boards of LED lighting fixtures since 2007. The basic structure of a metal-based circuit board includes a conductive layer (copper foil layer), an insulating heat dissipation layer, and a metal base layer (mostly aluminum or copper), which together provide good electrical insulation and heat dissipation.

In LED lamps, it can conduct heat quickly, which is very effective in dealing with the problem of high heat generation of LEDs. Aluminum substrates also support surface mount technology (SMT), which effectively handles heat diffusion in circuit design solutions, ensuring that LED lamps have better performance and longer service life

What is the thermal conductivity of Mcpcb?

The thermal conductivity of MCPCB ranges from 1.0-4W/mK, while high-performance MCPCB can reach 230W/mK.

What is the thermal conductivity of Mcpcb?

The thermal conductivity of MCPCB depends on its design and the materials used. ‌Generally speaking, the thermal conductivity of MCPCB is between 1.0-4W/mK, which can already meet the heat dissipation needs of most electronic devices. ‌However, for applications that require higher thermal conductivity, MCPCBs with thermal conductivity as high as 230W/mK have appeared on the market. This high-performance MCPCB uses special materials and designs to provide better heat dissipation. ‌

MCPCB material

  1. Aluminum substrate: Aluminum substrate is a metal-based copper-clad plate with good thermal conductivity and electrical insulation properties. It is usually composed of an aluminum alloy base layer and an insulating dielectric layer, and is suitable for electronic devices that require efficient heat dissipation, such as LED lighting and power supplies. Aluminum substrates can not only effectively conduct heat from the circuit board to the heat sink, but also have good mechanical strength and electromagnetic shielding effects.
  2. Copper substrate: Copper substrates are known for their excellent electrical conductivity and can provide low-resistance paths, which helps improve circuit performance. Copper’s thermal expansion coefficient is similar to that of many semiconductor materials, which helps reduce thermal stress and increase component reliability.
  3. Tungsten substrate: Tungsten substrate has good high-temperature stability and is suitable for electronic devices in high-temperature environments. Tungsten has a low thermal expansion coefficient, which helps maintain the dimensional stability of components at different temperatures, and is suitable for high-performance electronic devices that require compact designs.
  4. Nickel substrate: Nickel substrate has good magnetic properties and is suitable for the application of magnetic components. Nickel substrates exhibit excellent corrosion resistance and mechanical strength under certain environments, and are suitable for electronic devices in some special environments. ‌
  5. Stainless steel substrate: Stainless steel substrate is well-known for its excellent corrosion resistance and is suitable for electronic devices in some special environments. The durability and stability of stainless steel substrate make it an ideal choice for some harsh environments.

Advantages of MCPCB

  1. High thermal conductivity: The thermal conductivity of metal substrate PCB is much better than that of traditional plastic substrates such as FR4. It can effectively conduct the heat generated by components, reduce the operating temperature of components, and improve the reliability and life of circuit boards.
  2. Good thermal stability: Metal substrate PCB can maintain good dimensional stability and electrical performance in high temperature environments, and is suitable for high temperature working environments.
  3. High strength and rigidity: Metal substrate PCB has high mechanical strength and rigidity, is not easy to deform and break, and can withstand large external forces and vibrations.
  4. Excellent electrical insulation performance: Through the special insulation layer design, good electrical insulation performance is guaranteed to avoid electrical short circuits between components.
  5. Low impedance: The conductive layer of metal substrate PCB is made of metal material, which has low impedance, which is conducive to signal transmission and processing.
  6. Good processability: Metal substrate PCB can be processed by conventional mechanical processing methods such as drilling and cutting, which is convenient for the production of circuit boards with complex shapes and sizes. ‌
  7. Widely used: Aluminum substrates are widely used in audio equipment, computers, automobiles, lamps and lighting. Copper substrates are suitable for high-frequency circuits and areas with large changes in high and low temperatures.

Application of MCPCB

  1. Automotive electronics: The stability and reliability of metal-based PCBs make them an ideal choice in the automotive electronics field, ensuring the stable operation of automotive electronic systems.
  2. Medical devices: In medical devices, the high reliability and good electromagnetic compatibility of metal-based PCBs are essential to ensure the accuracy and safety of medical equipment.
  3. Industrial automation: Industrial automation equipment has high requirements for reliability and performance. The mechanical strength and high thermal conductivity of metal-based PCBs make them the preferred choice in the field of industrial automation.
  4. Communication base stations and radar systems: Communication base stations and radar systems need to process a large amount of data transmission and high-frequency signals. The excellent electrical properties and high-frequency characteristics of metal-based PCBs meet the needs of these applications.
  5. Antennas and filters: In the field of wireless communications, the electromagnetic shielding performance and stability of metal-based PCBs are essential to improving communication quality and reducing electromagnetic interference.
Application of MCPCB

How to make MCPCB

The process flow of metal-based PCB includes inner-layer circuit production, lamination, drilling, hole metallization, outer-layer dry film, outer-layer circuit, silk-screen printing, surface processing and post-processing. ‌

  1. Inner-layer circuit production: This step is mainly to produce the inner-layer circuit of the PCB circuit board, including cutting, pretreatment, lamination, exposure, DE (development, etching, film removal) and other processes, the purpose is to produce the inner-layer circuit of the PCB circuit board. ‌
  2. Lamination: Press the copper foil, prepreg and brown-treated inner-layer circuit board into a multi-layer board. This step is to press multiple inner-layer boards into one board. ‌
  3. Drilling: Use a drilling machine to drill holes of different diameters and sizes on the board according to customer requirements, so that the holes between the boards are convenient for subsequent processing of plug-ins, and can also help the board dissipate heat. ‌
  4. Hole metallization: Metallizing the non-conductor part on the hole wall can make the subsequent electroplating process more convenient. ‌This step is to plate copper in the hole so that the circuits on each layer of the board are conductive. ‌
  5. Outer layer dry film: The required circuit is exposed on the dry film through graphic transfer technology, in order to facilitate the subsequent process to make the circuit. ‌
  6. Outer layer circuit: The purpose is to plate the copper thickness to the thickness required by the customer and complete the circuit shape required by the customer. ‌
  7. Silk screen printing: The protective layer of the outer layer circuit is used to ensure the insulation, protective plate, and solder mask of the PCB. ‌
  8. Surface processing: Complete the processing according to the customer’s requirements, and test it to ensure the final quality audit. ‌Both THT and SMT parts are installed on the PCB using machinery and equipment. ‌
  9. Post-processing: Complete the processing according to the customer’s requirements, and test it to ensure the final quality audit.

Metal PCB Manufacturers

Welcome to our website! With over 18 years of experience in designing and manufacturing MCPCBs, we take pride in being your one-stop supplier. Our original factory spans 30,000㎡, and with a team of 229+ staff and advanced equipment, we achieve a daily peak production of up to 100k pieces.


As a trusted supplier, we hold certifications including UL, ISO13485, ISO9001, IATF16949 and SGS, enabling us to meet the high standards of clients across Europe, America, Israel, India, and so on. Our success is built on core values such as honesty, integrity, teamwork, appreciation, self-confidence, pragmatism, continuous learning, self-discipline, and fostering win-win cooperation. Experience reliability, efficiency, and quality with us. Explore our services and let us help you fulfill your MCPCB needs.

Metal PCB Manufacturers

Printed circuit board assembly metal core

The preparation processes of metal matrix composite materials include contact reaction method (CR method), mixed salt reaction method (LSM method), hot pressing preparation process, stirring casting method, semi-solid composite casting method, impregnation solidification method (MI technology) and centrifugal casting method.

  1. Contact reaction method (CR method) is to mix the matrix element or alloy powder and the strengthening element or alloy powder in a certain proportion, cold press into a prefabricated block with a certain density, and then immerse it in an alloy melt at a certain temperature. After the reaction, a fine strengthening phase is generated in the alloy melt, and after stirring and standing, it can be cast into various castings. This method has been used to prepare a variety of metal matrix composite materials, such as Al-based, Mg-based, Cu-based, Ti-based, Fe-based, Ni-based composite materials, showing excellent mechanical properties. ‌
  2. The mixed salt reaction method (LSM method) is to mix salts containing Ti and B, such as KBF4 and K2TiF6, and add them to high-temperature metal melt. The Ti and B in the salt are reduced by the metal under high temperature and react in the melt to form a reinforcing phase. After slag removal, it can be cast to obtain a reinforced metal matrix composite material. ‌
  3. The hot pressing preparation process is a solid phase composite process for preparing metal matrix composite materials by diffusion bonding continuous fibers and matrix alloys at a certain heating temperature and pressure.
  4. The stirring casting method is to add ceramic particles to the molten metal, and after uniform stirring, pour it into the mold to obtain products or secondary processing blanks. This method is easy to achieve mass production and has low cost, but the main disadvantage is that the combination of matrix metal and reinforcing particles is limited. ‌
  5. The semi-solid composite casting method is developed from the semi-solid casting method. Through strong stirring, the dendrite network skeleton is broken and the dispersed granular structure is retained, which improves wettability and promotes interface bonding. ‌
  6. The impregnation solidification method (MI technology) is a method of impregnating a pre-prepared reinforcement phase formed body with a high porosity into a molten matrix metal, allowing the matrix metal to penetrate the preform and then solidify it to prepare a composite material. ‌
  7. The centrifugal casting method is widely used in the casting of hollow parts. It forms a bimetallic layered composite material through a two-step casting method. This method is simple and has the advantages of low cost and high density of the casting, but the interface quality is not easy to control.

You may also like

What is a 5.1 amplifier board?
Wednesday, August 7th, 2024

A 5.1 amplifier board is a sound amplifier that can expand the current and voltage of an audio signal to make the sound louder. In addition, a 5.1 amplifier board also has a multi-channel processing function, which can output audio signals through multiple channels to enhance the sound field effect, making listening to music, watching movies, etc. more three-dimensional and realistic.
Compared with traditional 0 and 1 amplifiers, in addition to being able to connect two front speakers and two rear speakers, a 5.1 amplifier board can also connect a center speaker and a subwoofer, making the bass of music or movies more prominent and the sound deeper.
5.1 amplifiers are widely used in home theater systems. By combining with projectors, TVs and other equipment, a theater environment with excellent audio-visual effects can be created. In addition, for music lovers, a 5.1 amplifier board is also an indispensable device that can not only maximize the effect of music, but also allow people to experience the charm of music in an immersive way.

What is a 5.1 amplifier board?

5.1 Basic parameters of the amplifier board

Working mode: Class D
Quiescent current: 50mA
Working efficiency: 90%
Rated output power: 2200W+400W Frequency response: 20Hz to 20KHz Working voltage: DC24V-42V( Recommended voltage: DC42V Maximum output current: 10A PCB size: 114109MM
Potentiometer center distance: 21.5MM 21.5MM 21.5MM from left to right
Original TPA3223 is used

TPA3223 2.1 Digital Bluetooth 5.1 3034 Amplifier Board


1.The front input capacitor and interstage coupling capacitor use ELNA BP capacitor 10UF, the electrolytic capacitor signal main circuit uses Taiwan famous brand, and the main filter capacitor uses imported electrolytic capacitor 1000UF , ensuring strong and continuous power support.
2.The resistors are made of high-precision chip resistors, and the main circuit uses a five-ring metal film resistor with an accuracy of ±1%, which ensures a good signal-to-noise ratio for the whole machine.
3.The PCB uses a 1.6mm thick double-sided board, 2.0 ounces of copper thickness, and a full tin-spraying process to ensure good passing performance of large and small currents.
4.The fully enclosed dust-proof potentiometer is used, which has more stable performance and is more durable than ordinary potentiometers.
5.The red-gray ring high-current inductor and the fully shielded audio-specific output inductor are used to ensure a crisp and powerful sound.
The Bluetooth uses Qualcomm QCC3034 5.1 version Bluetooth module

5.1 amplifier board

5.1 amplifier board of working principle

  1. The core function of the amplifier board is to increase the amplification factor of the signal while protecting the circuit from damage. The amplifier board is usually used for isolation and current amplification between the programmable logic controller (PLC) and the input device or output device to improve the load capacity of the PLC and protect the PLC from faults such as overvoltage, overload, and load short circuit.
  2. The working principle of the amplifier board is based on the amplifier circuit, using electronic components with amplification characteristics, such as transistors. When the tiny current at the input end changes, a large current change will occur at the output end, and the change at the output end is several to hundreds of times greater than the change at the input end. The characteristic of this amplifier circuit is that only one potential point is amplified, and the other potential point is grounded by default. In addition, the integrated circuit (IC) is also an important part of the amplifier board. It integrates many transistors, resistors, capacitors and other components on a small piece of semiconductor silicon single crystal, and uses isolation technology to insulate them from each other in electrical properties, thereby realizing signal amplification and processing.

For example, an analog signal amplifier board can connect multiple sensors, collect differential signals and amplify them to the required multiples through an amplifier circuit. The board can work normally in the temperature range of -15℃ to 70℃, and the humidity can reach 90%, which is suitable for various harsh environments. This amplifier board is widely used in industrial automation, smart home, medical equipment and other fields to ensure stable signal transmission and processing

5.1 amplifier board of working principle

The role of the amplifier board

The main functions of the amplifier board:

  1. This is because some process control equipment such as proportional valves can only receive analog voltage or current signals. Therefore, in order to ensure that these devices can correctly receive and respond to the signals sent by the PLC, an intermediate amplification link, namely the amplifier board, is required.
    It can properly amplify the signal output by the PLC D/A module to make the proportional valve work normally.
  2. The amplifier board is also called the IO relay board. Its main functions include isolation, current amplification, and providing additional I/O channels. It can improve the load capacity and reliability of the PLC system and prevent the PLC host from being damaged due to overvoltage, overload or load short circuit. ‌
  3. The amplifier board is widely used in the field of industrial automation. It can not only improve the load capacity and reliability of the PLC system, but also protect the output or input points of the PLC.
  4. The amplifier board can save cabinet space, increase installation speed, facilitate maintenance and replacement, and has protection circuits and built-in insurance, which makes it difficult to damage the amplifier board itself and the load.
  5. The amplifier board can also play the role of amplifying interference, because its input and output are photoelectrically isolated, and the PLC will not be burned out due to high-voltage impact load.
    These features make the amplifier board play a vital role in industrial automation systems.

Application of 5.1 amplifier board

5.1 channel amplifiers are mainly used in home theater systems to provide surround sound audio output and an immersive listening experience for the audience. ‌
5.1 channel amplifiers are an indispensable component of home theater systems. They can provide five full-band channels and one low-frequency effect channel. Through carefully designed audio processing, the audience can feel the sound from different directions, thereby enhancing the immersion of movies or concerts.

Application of 5.1 amplifier board

In addition to home theater applications, 5.1 channel amplifiers are also suitable for professional audio systems, such as conference rooms, performance venues, etc., where high-quality audio output is required. ‌In these occasions, 5.1 channel amplifiers can ensure stable signal transmission and high-quality restoration to meet professional-level audio needs. ‌

In short, the 5.1 channel amplifier board provides multi-channel audio output, bringing a more realistic and three-dimensional sound experience to viewers or listeners, playing an important role in both home entertainment and professional applications.

FAQs About 5.1 amplifier board

Does the 5.1 amplifier front panel consist of 6 front panels?

  1. A true 5.1 should have 6 input interfaces (marked as: 5.1IN) and 6 speakers including a subwoofer.
  2. 5.1 is an independent 6-channel amplification and 6-channel speaker restoration, and of course an independent 5.1-channel sound source is required.
  3. The 5.1 speaker requires the amplifier to have an independent 6-channel amplifier. Virtual ring. Winding into multiple channels

How many power amplifiers are there in a 5.1 channel amplifier?
Two situations, the first is 5.1 full-channel power amplification, that is, 6 channels, but in this case the power of the bass channel is small, which can drive 6~8-inch bass, but it can’t drive large ones.
The second is 5-channel power amplification, except for the bass channel, the other channels are power amplified, the bass channel only provides a level signal, and the signal enters the active subwoofer amplifier board to drive the subwoofer, which is more common.

Can the 5.1 channel amplifier board use dual DC?

  1. Ordinary transistor power amplifiers use DC. What do you mean by “using dual DC power”? Does it mean using a backup power supply? … Using a backup power supply is completely possible.
  2. In addition, there are power amplifiers that are powered by [positive and negative symmetrical power supplies]. Such power amplifiers must use DC positive and negative symmetrical power supplies.

Can I make a 5.1 with two 2.1 amplifier boards?


One of them is used for 2.1 (the analog subwoofer circuit is removed as bass amplification), and the other is used for surround channels (remove the subwoofer circuit and change to center). After merging, it is 5.1. The 6 amplification channels must be connected to the 5.1 decoding output.


Can a 5.1 pre-stage board be used with a 2.0 amplifier?
It can definitely be used. The pre-stage board only plays the role of audio adjustment and does not perform power amplification. The input audio signal can be connected to the amplifier after being adjusted and output by the pre-stage board. For the 5.1 channel, just select 2 of the output signals.

You may also like

What Is led ring light pcb
Friday, August 2nd, 2024

led ring light pcb leads the development of lighting industry with its innovative design, high efficiency and flexibility, bringing more intelligent and comfortable lighting experience to our life.

It is not only an integrated platform of electronic components, but also a perfect combination of modern technology and aesthetics, and is the focus of future lighting trends.

led ring light pcb, like a magic wand on the electronic stage, uses precise SMT technology to lightly attach LED components to it. Whether it is a warm small lamp for home decoration, efficient lighting in commercial space, or smart display inside the car, it is indispensable.

Its core structure includes efficient LED lamp beads, power cords that provide electricity, and intelligent controllers that adjust light effects, which together build an excellent lighting solution.

What Is led ring light pcb

Why use mcpcb for led ring light pcb

With the continuous development of LED technology, the heat generated by LEDs has gradually increased. The traditional FR4 printed circuit board (PCB) has been unable to meet the heat dissipation requirements due to its low thermal conductivity (only 0.36W/m.K). In order to solve this problem, the metal core printed circuit board (MCPCB) was proposed. It attaches the original printed circuit board to a metal with better thermal conductivity (such as aluminum and copper) to enhance the heat dissipation effect. The thermal conductivity efficiency of MCPCB is higher than that of traditional FR4 PCB, reaching 1W/m.K to 2.2W/m.K, which effectively improves the heat dissipation performance of LED PCB.

In addition, the use of MCPCB can also reduce the number of LEDs required to generate lighting, making it an ideal choice for street lights, automotive LED applications, and backlight unit applications. The use of metal substrates has practical advantages in heat dissipation, thermal conductivity, reliability, and electrical insulation, especially in harsh environments, and can also achieve reliable operation of LEDs. For example, using a metal substrate can reduce the LED junction temperature by 20-30°C, improve light output and enhance the overall performance of the product, ensure consistent UV light generation, and expand the possibilities of UV applications in various industries.

Unveiling the Components of LED PCBs

  • LED Chips: The heart of the LED PCB, these semiconductor chips emit light when current passes through them.
  • Substrate Material: The base layer of the PCB provides mechanical support and thermal conductivity.
  • Copper Traces: These conductive pathways connect the LEDs and other components, allowing current to flow through the circuit.
  • Solder Mask: A protective layer that covers the copper traces, safeguarding them from external factors and preventing short circuits.
  • Silkscreen: This layer contains markings and labels, providing important information about the PCB’s components and assembly.

Advantages of led ring light pcb?

Thermal performance advantages of metal substrate PCB

High thermal conductivity:
The thermal conductivity of metal substrate PCB is much better than that of traditional plastic substrates such as FR4. It can effectively conduct the heat generated by components, reduce the operating temperature of components, and improve the reliability and life of circuit boards.

Good thermal stability:
Metal substrate PCB can maintain good dimensional stability and electrical performance in high temperature environment, and is suitable for high temperature working environment.

Mechanical performance advantages of metal substrate PCB

High strength: Metal substrate PCB has high mechanical strength and rigidity, is not easy to deform and break, and can withstand large external forces and vibrations.

Good processability: Metal substrate PCB can be processed by conventional mechanical processing methods such as drilling and cutting, which is convenient for the production of circuit boards with complex shapes and sizes.

Electrical performance advantages of metal substrate PCB
Excellent electrical insulation performance: Metal substrate PCB has a special insulation layer design to ensure good electrical insulation performance and avoid electrical short circuits between components.

Low impedance: The conductive layer of metal substrate PCB is made of metal material, which has low impedance, which is conducive to signal transmission and processing.

How does led ring light pcb dissipate heat?

The power device is mounted on the circuit layer. The heat generated by the device during operation is quickly transferred to the metal base layer through the insulating layer, and then the metal base layer transfers the heat to achieve heat dissipation of the device.

Compared with the traditional FR-4, the aluminum substrate can reduce the thermal resistance to the minimum, making the aluminum substrate have excellent thermal conductivity; compared with the thick film ceramic circuit, its mechanical properties are extremely good.

In the circuit design scheme, the heat diffusion is handled very effectively, thereby reducing the module operating temperature, extending the service life, and improving the power density and reliability; reducing the assembly of the heat sink and other hardware (including thermal interface materials), reducing the product volume, and reducing the hardware and assembly costs; combining the power circuit and the control circuit

How to make a LED light circuit board?

Step 1: Design Your LED PCB:
Using PCB design software, create a schematic for your LED circuit and design the PCB layout, considering component placement and signal flow.

Step 2: Choose the Materials:
Select a suitable substrate material and copper-clad board based on your project requirements.

Step 3: Transfer the Design:
Print your PCB layout onto a special transfer paper and transfer it onto the copper-clad board using a heat press.

Step 4: Etch the Board:
Immerse the board in an etching solution to remove the excess copper and reveal the copper traces.

Step 5: Drill Holes:
Drill holes on the board to accommodate the LED chips and other components.

Step 6: Solder the Components:
Carefully solder the LED chips and other components onto the board, ensuring secure connections.

Step 7: Test Your LED PCB:
Connect your LED PCB to a power source and test the LEDs to ensure they light up correctly.

How to make a LED light circuit board?

Capabilities of led ring light pcb?

ItemCapabilities
Layer Count1 – 10 Layers
Max Board Dimension24*64″(610*1625mm)
Min Board Thickness0.6mm
Max Board Thickness4.0mm
Conductor Thickness0.5oz – 10oz
Min Line Width/Line Space4/4mil (0.10/0.10mm)
Min Hole Diameter10mil (0.25mm)
Min Punch Hole Dia0.12″ (3.0mm)
Min Hole Spacing16mil (0.4mm)
Min PAD Ring(Single)3mil (0.075mm)
PTH Wall ThicknessNormal: 0.59mil (15um); HDI: 0.48mil (12um)
Min Solder PAD Dia14mil (0.35mm)
Min Soldermask Bridge8mil (0.20mm)
Min BAG PAD Margin5mil (0.125mm)
PTH/NPTH Dia TolerancePTH: ±3 mil (0.075mm); NPTH: ±2mil (0.05mm)
Hole Position Deviation±3mil (0.075mm)
Outline ToleranceCNC: ±6 mil (0.15mm); Die Punch: ±6 mil (0.1mm)
Max Aspect Ratio10:01
Surface TreatmentENIG, Flash Gold, Hard Gold Finger, Gold Plating(50mil), Gold finger,
Selected Gold Plating, ENEPIG, ENIPIG, HAL, HASL(LF), OSP, Silver Imm., Tin Imm
Capabilities

Applications of led ring light pcb?

  1. Application in medical equipment
    The rapid progress of medicine is closely related to the rapid development of the electronics industry. Many medical devices are made of basic PCBs alone, such as pH meters, heart rate sensors, temperature measurements, electrocardiographs, electroencephalographs, MRIs, X-ray machines, CT scanners, blood pressure machines, blood sugar level measuring equipment, etc.
  2. Application in industrial equipment
    PCBs are widely used in manufacturing, especially in industries with high-power mechanical equipment; these devices run on high power and require high current circuit drive. Such as arc welding, large servo motor drives, lead-acid battery chargers, clothing cotton machines, etc.
  3. Application in lighting
    LED lights and high-intensity LEDs are mounted on PCBs based on aluminum substrates; aluminum has the property of absorbing heat and dissipating it in the air.
  4. Application in the automotive and aerospace industries
    Flexible PCBs are lightweight but can withstand high vibrations. Because of their light weight, they can reduce the total weight of spacecraft; flexible PCBs can be adjusted even in narrow spaces. These flexible PCBs are used as connectors, interfaces, and can be assembled even in compact spaces

FAQs About led ring light pcb

What is the thermal conductivities and withstanding voltages of BT/FR4 layer and Dielectric layer?
The SinkPAD conducts heat primarily through the copper base (400W/m.K), the withstanding voltages of Dielectric layer is around 4KV.

What is the placement accuracy for the SMT components?
+/-0.05mm is our SMT accuracy tolerance. You are welcome to come to our SMT factory in Shenzhen China and Vietnam.

Can the aluminum be made as the base of sinkpad MCPCB?

Actually, the sinkpad can only use copper as the base.
As you can see the below manufacturing steps, the SinkPad will etch the copper base into convex platform with Copper Etching Solution, then hollow out the Double Layer FR4 PCB, and do lamination with the convex platform.
However, regarding of current technical conditions, since aluminum or aluminum alloy cannot directly react with acid, the reaction process is too complex and difficult to control, which will increase the difficulty of etching the LED pad platform. Considering the scrap rate, the process of etching LED pad platform with aluminum is more complex and the overall cost is higher.

Can I plated copper in mcpcb via holes?
Generally speaking, copper plating through holes requires hole rings, otherwise the copper in the hole wall will easily fall off.

In addition, if it is a copper substrate, through the hole first to resin plug before copper plating. 

Otherwise there’s no chemical reaction between copper and copper. And if the copper layer is connected to each copper layer, it is easy to short circuit.

Are you UL certified led pcb manufacturer?

Yes, we are UL certified manufacturer, our UL is E475635. We have already passed UL certificated. Meanwhile, we are passed ISO9001, ISO13485 and IATF16949 certifications. 

Our LED pcbs are manufactured under highly monitored by these quality system controls.

How does the conveity of sinkpad manufactured?

Actually the sinkpad can only use copper as the base.

As you can see the below manufacturing steps, the SinkPad will etch the copper base into convex platform with Copper Etching Solution, then hollow out the Double Layer FR4 PCB, and do lamination with the convex platform.However, regarding of current technical conditions, since aluminum or aluminum alloy cannot directly react with acid, the reaction process is too complex and difficult to control, which will increase the difficulty of etching.

You may also like

What Is led light pcb?
Friday, August 2nd, 2024

led light pcb , or printed circuit board, is a stable carrier of electronic components. It not only realizes electrical connection but also plays a supporting role. As the core component of electronic products, it is widely used in various electronic devices. In the field of LED lighting, PCB light board provides support and power for LED lamp beads, ensuring their stable operation in scenes such as home, commercial and automotive lighting. PCB with LED is often used to manufacture electronic products such as indicator lights, lighting equipment and display screens. The LED lamp beads on these PCBs are usually precisely soldered by SMT (surface mount technology).

What Is led light pcb?

led light pcb

LED PCB light board leads the development of the lighting industry with its innovative design, high efficiency and flexibility, bringing a more intelligent and comfortable lighting experience to our lives. It is not only an integrated platform for electronic components, but also a perfect combination of modern technology and aesthetics, and is the focus of future lighting trends.

Why use mcpcb for led light pcb

With the continuous development of LED technology, the heat generated by LEDs has gradually increased. The traditional FR4 printed circuit board (PCB) has been unable to meet the heat dissipation requirements due to its low thermal conductivity (only 0.36W/m.K). In order to solve this problem, the metal core printed circuit board (MCPCB) was proposed. It attaches the original printed circuit board to a metal with better thermal conductivity (such as aluminum and copper) to enhance the heat dissipation effect. The thermal conductivity efficiency of MCPCB is higher than that of traditional FR4 PCB, reaching 1W/m.K to 2.2W/m.K, which effectively improves the heat dissipation performance of LED PCB.

In addition, the use of MCPCB can also reduce the number of LEDs required to generate lighting, making it an ideal choice for street lights, automotive LED applications, and backlight unit applications. The use of metal substrates has practical advantages in heat dissipation, thermal conductivity, reliability, and electrical insulation, especially in harsh environments, and can also achieve reliable operation of LEDs. For example, using a metal substrate can reduce the LED junction temperature by 20-30°C, improve light output and enhance the overall performance of the product, ensure consistent UV light generation, and expand the possibilities of UV applications in various industries.

Why use mcpcb for led light pcb

Why use mcpcb for led light pcb

Advantages of led light pcb?

High thermal conductivity: LED PCB, especially aluminum substrate, uses aluminum alloy material with high thermal conductivity, which can effectively conduct away the heat generated by LED, maintain the stability of LED operation and extend the service life. This high thermal conductivity is essential to prevent heat accumulation and keep LED working at high brightness for a long time.

High efficiency: Compared with traditional incandescent lamps and energy-saving lamps, LED lamps have higher luminous efficiency and can provide better lighting effects while reducing energy consumption. This makes LED PCB have significant advantages in energy saving and environmental protection.

Long life: The service life of LED PCB far exceeds that of traditional lighting products, and it can provide longer continuous lighting, reducing the trouble of frequent bulb replacement and reducing maintenance costs.

Low energy consumption: LED PCB requires much less electricity than traditional lighting equipment while providing the same brightness, which is very important for energy saving, emission reduction and sustainable development

How does led light pcb dissipate heat?

The power device is mounted on the circuit layer. The heat generated by the device during operation is quickly transferred to the metal base layer through the insulating layer, and then the metal base layer transfers the heat to achieve heat dissipation of the device. Compared with the traditional FR-4, the aluminum substrate can reduce the thermal resistance to the minimum, making the aluminum substrate have excellent thermal conductivity; compared with the thick film ceramic circuit, its mechanical properties are extremely good. In the circuit design scheme, the heat diffusion is handled very effectively, thereby reducing the module operating temperature, extending the service life, and improving the power density and reliability; reducing the assembly of the heat sink and other hardware (including thermal interface materials), reducing the product volume, and reducing the hardware and assembly costs; combining the power circuit and the control circuit

How to make a LED light circuit board?

  1. Cutting
  2. Cutting process Picking materials – cutting
  3. The purpose of cutting
    Cut the large-sized incoming materials into the size required for production
  4. Precautions for cutting
    â‘  Check the size of the first piece of material
    â‘¡ Pay attention to the scratches on the aluminum surface and the copper surface
    â‘¢ Pay attention to the delamination and flash of the board edge
  5. Drilling
  6. Drilling process
    Pinning – drilling – board inspection
  7. The purpose of drilling
    Positioning and drilling holes in the board to assist the subsequent production process and customer assembly
  8. Precautions for drilling
    â‘  Check the number of holes and the size of the holes
    â‘¡ Avoid scratches on the board
    â‘¢ Check the flash of the aluminum surface and the hole position deviation
    â‘£ Check and replace the drill bit in time
    ⑤ Drilling is divided into two stages, one drilling: drilling holes after cutting for peripheral tool holes
    Second drilling: tool holes in the unit after solder mask
  9. Dry/wet film imaging
  10. Dry/wet film imaging process
    Grinding board – film pasting – exposure – development
  11. Purpose of dry/wet film imaging
    To present the part required for making circuits on the board
  12. Precautions for dry/wet film imaging
    â‘  Check whether the circuit is open after development
    â‘¡ Whether the development alignment is biased to prevent the generation of dry film fragments
    â‘¢ Pay attention to the circuit defects caused by scratches on the board
    â‘£ No air should remain during exposure to prevent poor exposure
    ⑤ After exposure, it should be still for more than 15 minutes before development
    IV. Acid/alkaline etching
  13. Acid/alkaline etching process
    Etching-film stripping-drying-board inspection
  14. Purpose of acid/alkaline etching
    After imaging the dry/wet film, keep the required circuit part and remove the excess part outside the circuit. During acid etching, attention should be paid to the corrosion of the etching solution to the aluminum substrate;
  15. Precautions for acid/alkaline etching
    â‘  Pay attention to incomplete etching and excessive etching
    â‘¡ Pay attention to line width and line thickness
    â‘¢ Oxidation and scratches are not allowed on the copper surface
    â‘£ The dry film should be removed cleanly
    V. Silk screen solder mask and characters
  16. Silk screen solder mask and character process
    Silk screen-pre-bake-exposure-development-characters
  17. Purpose of silk screen solder mask and characters
    â‘  Anti-soldering: protect circuits that do not need soldering and prevent tin from entering and causing short circuits
    â‘¡ Characters: serve as markings
  18. Precautions for silk screen solder mask and characters
    â‘  Check whether there is garbage or foreign matter on the board
    â‘¡ Check the cleanliness of the stencil â‘¢ Pre-bake for more than 30 minutes after silk screen printing to avoid bubbles in the circuit
    â‘£ Pay attention to the thickness and uniformity of the silk screen
    ⑤ After pre-bake, the board should be completely cooled to avoid film contamination or damage to the glossiness of the ink surface
    â‘¥ Place the ink side down during development
    VI. V-CUT, gong board
  19. V-CUT, gong board process
    V-CUT——gong board——tear protective film——remove burrs
  20. Purpose of V-CUT, gong board
    â‘  V-CUT: Cut the single PCS circuit and the entire PNL board to leave a small part connected for easy packaging and removal
    â‘¡ Gong board: remove the excess part of the circuit board
  21. Precautions for V-CUT, gong board
    â‘  During the V-CUT process, pay attention to the size of the V, the incompleteness and burrs of the edges
    â‘¡ Pay attention to the burrs caused by the gong board, the gong knife is tilted, and the gong knife is checked and replaced in time
    â‘¢ Finally, avoid scratches on the board when removing the burr
    VII. Testing, OSP
  22. Testing, OSP process
    Circuit test-voltage resistance test-OSP
  23. Testing, the purpose of OSP
    â‘  Circuit test: Check whether the completed circuit is working normally
    â‘¡ Voltage resistance test: Check whether the completed circuit can withstand the specified voltage environment
    â‘¢ OSP: Allow the circuit to be soldered better
  24. Testing, OSP precautions
    â‘  How to distinguish and store qualified and unqualified products after testing
    â‘¡ Placement after OSP
    â‘¢ Avoid damage to the circuit
    VIII. FQC, FQA, packaging, shipment
  25. Process
    FQC-FQA-packaging-shipping
  26. Purpose
    â‘  FQC conducts full inspection and confirmation of the product
    â‘¡ FQA spot check and verification
    â‘¢ Pack and ship to customers as required
  27. Note
    â‘  FQC should pay attention to the appearance confirmation during the visual inspection and make reasonable distinctions
    â‘¡ FQA should conduct random inspections to verify the inspection standards of FQC
    â‘¢ Confirm the packaging quantity to avoid mixed boards, wrong boards and packaging damage

Capabilities of led light pcb?

ItemCapabilities
Layer Count1 – 10 Layers
Max Board Dimension24*64″(610*1625mm)
Min Board Thickness0.6mm
Max Board Thickness4.0mm
Conductor Thickness0.5oz – 10oz
Min Line Width/Line Space4/4mil (0.10/0.10mm)
Min Hole Diameter10mil (0.25mm)
Min Punch Hole Dia0.12″ (3.0mm)
Min Hole Spacing16mil (0.4mm)
Min PAD Ring(Single)3mil (0.075mm)
PTH Wall ThicknessNormal: 0.59mil (15um); HDI: 0.48mil (12um)
Min Solder PAD Dia14mil (0.35mm)
Min Soldermask Bridge8mil (0.20mm)
Min BAG PAD Margin5mil (0.125mm)
PTH/NPTH Dia TolerancePTH: ±3 mil (0.075mm); NPTH: ±2mil (0.05mm)
Hole Position Deviation±3mil (0.075mm)
Outline ToleranceCNC: ±6 mil (0.15mm); Die Punch: ±6 mil (0.1mm)
Max Aspect Ratio10:01
Surface TreatmentENIG, Flash Gold, Hard Gold Finger, Gold Plating(50mil), Gold finger,
Selected Gold Plating, ENEPIG, ENIPIG, HAL, HASL(LF), OSP, Silver Imm., Tin Imm

Applications of led light pcb?

  1. Application in medical equipment
    The rapid progress of medicine is closely related to the rapid development of the electronics industry. Many medical devices are made of basic PCBs alone, such as pH meters, heart rate sensors, temperature measurements, electrocardiographs, electroencephalographs, MRIs, X-ray machines, CT scanners, blood pressure machines, blood sugar level measuring equipment, etc.
  2. Application in industrial equipment
    PCBs are widely used in manufacturing, especially in industries with high-power mechanical equipment; these devices run on high power and require high current circuit drive. Such as arc welding, large servo motor drives, lead-acid battery chargers, clothing cotton machines, etc.
  3. Application in lighting
    LED lights and high-intensity LEDs are mounted on PCBs based on aluminum substrates; aluminum has the property of absorbing heat and dissipating it in the air.
  4. Application in the automotive and aerospace industries
    Flexible PCBs are lightweight but can withstand high vibrations. Because of their light weight, they can reduce the total weight of spacecraft; flexible PCBs can be adjusted even in narrow spaces. These flexible PCBs are used as connectors, interfaces, and can be assembled even in compact spaces

You may also like

Do You Know What a Metal Core PCB Is?
Saturday, February 25th, 2023

Metal Core Printed Circuit Board (short for MCPCB) is a technology developed to overcome the thermal limitations of the FR4 Printed Circuit Board. Different with traditional FR4 PCB, the PCB uses FR4 material as base core, while the base material of a metal core PCB is aluminum or copper. So compared with FR4 PCB, Metal Core is a better choice if your boards need to perform in high temperature environment.

What is metal core PCB?

A Metal Core PCB (MCPCB), also known as a thermal PCB or metal backed PCB, is a type of PCB that a metal material as its base for the heating dissipation part of the board. The thick metal is covering one side or double side of the PCB. The purpose of the core of a MCPCB is to redirect heat away from critical board components (such as LED or IC chips), and to less crucial areas such as the metal heatsink backing or metallic core. Base metals in the MCPCB are used as an alternative material to FR4 boards.

(Metal_core_PCB)

Same as FR4 PCB, the metal core PCB can be divided into Single layer MCPCB, Double layers MCPCB and Multi-layer MCPCB.

  • Single layer MCPCB

A single layer MCPCB is consist of a metal base (usually aluminum or copper alloy), thermal conductivity/dielectric layer and a copper trace layer, you can check below stack up for more details. Due to it only has one layer copper trace, sometimes we called it as one-layer MCPCB or single sided MCPCB.

(Stack_up_of_single_layer_MCPCB)

The single sided MCPCB can be used with surface mount and chip & wire components, and provides much lower thermal resistance than FR4 PCB. What’s more, the metal core provides lower cost than ceramic substrates, and allows much larger areas than ceramic substrates.

Meanwhile, superior heat dissipation and good durability of Aluminum of metal core PCB can greatly eliminate heat sinks or other some voluminous hardware for engineers or designers.

  • Double layer MCPCB

Double layers MCPCB (2L MCPCB) has two copper layers on one side of PCB, and metal core as a base core on the bottom side of whole MCPCB, so the components only can be populated on the top side, below is a structure of double layer MCPCB.

(Stack_up_of_double_layers_metal_core_PCB)

From the stack up of double layers MCPCB, we can see it consists of a single layer MCPCB and a double sided FR4 PCB, so it needs an additional pressing process to laminate the thermal conductivity and FR4 PCB. Compared with normal FR4, this structure needs more technology and experience on laminating of two layers together with metal core.

There are two layers copper trace on the surface of MCPCB, can we call it as double sided MCPCB like single layer MCPCB?

The answer is NO, because they have different structure and perform different properties. In our next post, we will show you the differences between double sided MCPCB and 2 layers MCPCB.

  • Multi-layer MCPCB

Same as FR4 PCB, for those copper traces more than 2 layers, we named them Multi-layer MCPCB. Its structure is same as FR4 PCB, but more complex to fabricate. Below is a typical stack up of a 4 layers MCPCB:

(Stack_up_of_4L_MCPCB)

Contrast with single layer or double layers MCPCB, multi-layer MCPCB can populate more components and achieve better performance in electronical performance.

Why Choose Metal core PCB?

Metal core PCB offers a great list of advantages when apply in a high-power application, below we listing some benefits of it:

  • Excellent heat dissipation
  • Lower thermal expansion than FR4 PCB
  • Dimensional stability than polyimide FPC
  • Great durability
  • Long lifetime
  • High utilization rate of space due to the heating can be transferred quickly
  • High strength and lightweight than FR4 PCB
  • Cost-effective

Where can we use Metal core PCB?

Metal core PCB can be used in high-power filed where requires fast cooling, good heat dissipation characteristics, the following popular applications may give you a guideline:

  • LED lighting
  • Power suppliers
  • Power conversion system
  • Automotive electronics
  • Telecom industrial
  • Photovoltaics
  • Semiconductors

With more than 16 years manufacturing experience, Best Technology is one of MCPCB supply leaders in Asia with good metal core PCB capability, we are so confident that we can provide you high quality, fast delivery and excellent one-stop service. Warm welcome to contact us if you have inquiries.

You may also like