pcb
Home > Blog

Posts Tagged ‘Solder’

What is the melting point of PCB solder?
Monday, October 7th, 2024

PCB solder plays a vital role in the assembly and function of PCBs. Reliable solder joints must remain intact to prevent components from loosening or falling off the PCB. Solder is the material used to connect the various electronic components on the PCB. Its importance is reflected in several key aspects. Solder ensures that electronic components can be firmly attached to the PCB.

What type of solder for PCB?

The commonly used types of solder for PCB include solder paste, tin bar and tin wire. ‌

  • 1. ‌Solder paste‌: Mainly used in reflow soldering process. Solder paste consists of tin powder, flux and other additives. Tin powder is usually an alloy of tin and other metals. According to different melting points, solder paste can be divided into three types: low temperature, medium temperature and high temperature; according to different lead content, it can be divided into lead solder paste and lead-free solder paste. Lead-free solder paste gradually replaces lead solder paste to reduce environmental pollution‌.
What is the melting point of PCB solder?
  • 2. ‌Solder bar‌: Mainly used in wave soldering process. Tin bar (solder bar) has excellent antioxidant ability, good fluidity after melting, suitable for wave soldering process, and is widely used in PCBA processing due to its good fluidity and strong solderability.
  • 3. Tin wire: Mainly used in post-soldering process. Similar to tin bar, tin wire is also a kind of welding material, mainly used for manual welding or other occasions where filament solder is required.

In addition, the selection of welding materials also involves the selection of solder alloys. Eutectic alloys are one of the preferred solder alloys because of their low melting point, low welding temperature, small crystal grains, and dense structure, which are conducive to improving the strength of solder joints.

What temperature should solder be for PCB?

The solder temperature of PCB should vary according to different types of components and welding processes. ‌‌

For lead-containing PCB boards, the temperature in the preheating stage is usually controlled at 80~120℃ for 1~3 minutes; the temperature in the insulation stage is 150~180℃ for 30~60 seconds; the temperature in the reflow stage is 210~240℃ for 20~40 seconds; the cooling stage speed should be controlled within the range of 4~6℃ per second. ‌

For lead-free PCB boards, the temperature in the preheating stage is usually controlled at 100~150℃, the insulation stage is 180~220℃, the reflow stage is 240~260℃, and the cooling speed should be controlled within the range of 3~5℃ per second. ‌

What is the best soldering temperature for PCB? ‌

The best soldering temperature range for PCB is usually between 240 and 280 degrees Celsius. This temperature range is suitable for manual soldering and can ensure the best soldering effect and component reliability. ‌

For different types of welding situations, the temperature requirements are different:

  • 1. Wave soldering: The optimal temperature is 280 degrees Celsius, ensuring that the solder joint temperature is 50 degrees Celsius higher than the melting point of the solder to achieve reliable welding results.
  • 2. Small components (such as resistors and capacitors below 1206, and components with an area of ​​less than 5 mm²): The recommended temperature is 250 degrees Celsius to prevent damage to the circuit board.
  • 3. Large components: The soldering iron temperature should be set between 350 and 370 degrees Celsius, and the maximum should not exceed 390 degrees Celsius. The welding time should be kept within a few seconds to prevent damage to the pads on the PCB.
  • 4. SMT processing: The recommended manual soldering temperature range is 240 to 280 degrees Celsius. Try to minimize the gap between the set temperature and the actual working temperature to achieve the best welding effect and component reliability.
What is the melting point of PCB solder?

In addition, the precise management of temperature during the welding process is also required to ensure the quality of the solder joints and circuit performance of the PCB board.

  • The preheating stage is very important to reduce the thermal shock during welding. The preheating temperature is usually controlled between 80 and 120 degrees Celsius for 1 to 3 minutes.
  • The insulation stage is to fully melt the components and solder paste on the PCB board. The temperature is usually controlled between 150 and 180 degrees Celsius for 30 to 60 seconds.
  • The cooling stage is to avoid thermal stress caused by rapid cooling. The cooling rate should be controlled to drop between 4 and 6 degrees Celsius per second.

What temperature does PCB solder melt?

The melting temperature of PCB solder depends on the type of solder. The melting temperature of lead solder ranges from 183°C to 217°C, while the melting temperature of lead-free solder is usually between 217°C and 257°C.

What is the melting point of PCB solder?

Lead solder has a lower melting point, usually between 183°C and 217°C. During the reflow process, the preheating temperature of lead solder is controlled at 80°C to 120°C, the holding temperature is 150°C to 180°C, the reflow temperature is 210°C to 240°C, and the cooling rate decreases by 4°C to 6°C per second.

The melting point of lead-free solder is higher, usually between 217°C and 257°C. During the reflow process, the preheating temperature of lead-free solder is controlled at 100°C to 150°C, the holding temperature is 180°C to 220°C, the reflow temperature is 240°C to 260°C, and the cooling rate decreases by 3°C to 5°C per second.

What is the melting point of PCB material?

The melting point of PCB material depends on its specific composition and type, usually between 1064℃ and 900℃. For PCB substrate materials, such as FR-4, its temperature resistance is measured by the Tg value (glass transition temperature). Ordinary FR-4 sheets have lower heat resistance, while high TG FR-4 sheets have better heat resistance and can withstand higher temperatures.

Different types of PCB materials have different melting points and heat resistance. The long-term working temperature of ordinary FR-4 sheets is generally between 130℃ and 140℃, and the instantaneous temperature resistance can reach 150℃ to 260℃. In contrast, PCBs made of special materials such as polyimide can withstand higher temperatures, even up to 280℃.

In addition, the surface treatment layer material of the PCB will also affect its heat resistance. For example, the melting point of the gold plating layer depends on the composition of the metal material used.

Which solder is best for PCB?

Choosing a solder suitable for PCB requires comprehensive consideration of multiple factors. The following solders have their own advantages and disadvantages:

  • Tin-silver-copper (SAC) alloy: good mechanical and electrical properties, high reliability, suitable for a variety of welding processes, and environmentally friendly. But the cost is high and the welding process requirements are high.
  • Tin-copper (Sn-Cu) alloy: low cost, good solderability, and environmentally friendly. The disadvantage is that the mechanical properties are slightly worse in high-demand scenarios.

What type of solder should not be used with electronics?

Electronic products should not use strong alkali, rosin grease, coconut oil, and neutral flux as flux. ‌

In the soldering process of electronic products, it is very important to choose a suitable flux. The main function of the flux is to remove the oxide film, prevent oxidation, and improve the quality of soldering.

However, some substances are not suitable for use as flux. Strong alkali and rosin grease will corrode the soldering joint and affect the quality of soldering. In addition, the use of acidic flux will also corrode the soldering joint, so acidic flux should be avoided.

In order to ensure the smooth progress of the soldering process and ensure the quality of soldering, some measures can be taken.

First, choose lead-free solder materials that meet ROHS standards to reduce environmental pollution. Second, use high-brightness soldering iron tips, reduce the use of soldering oil and rosin, and reduce smoke generation. Finally, select appropriate welding materials and processes according to specific needs, such as solder wire, solder paste, solder sheet, etc., to ensure the mechanical and electrical performance of welding.

In short, solder is a key element in the PCB assembly process. Its quality is directly related to whether the electronic equipment can operate normally, and the characteristic of solder melting point plays a decisive role in the welding process. I must deeply study and understand the characteristics of solder to ensure that every solder joint can meet the highest standards.

You may also like

How does solder paste inspection work?
Tuesday, September 10th, 2024

In the field of electronic manufacturing, precision is the key. One of the key processes is to ensure that the solder paste applied to the circuit board is in the correct position and in the correct amount. This process is called solder paste inspection (SPI) and plays a key role in the reliability of electronic products.

In the SMT patch process, solder paste inspection is the first and most important step, which determines the subsequent soldering quality and other issues, so the solder paste inspection step is crucial.

How to check solder paste?

1. Visual observation:

Under natural light or good lighting conditions, directly observe the appearance characteristics of the solder paste such as color and state with the naked eye. Normal solder paste has uniform color and no obvious particle agglomeration, precipitation, stratification and other phenomena.

How does solder paste inspection work?

2. Viscosity detection:

Viscosity is an important physical performance indicator of solder paste, which has a great influence on printing performance and welding quality. Professional equipment such as rotary viscometer can be used for detection.

In general, the viscosity of solder paste should be within a certain range and meet the product specification requirements. If the viscosity is too high, it may cause printing difficulties and poor demolding; if the viscosity is too low, the solder paste may flow during printing, affecting printing accuracy.

3. Metal content detection:

Metal content directly affects the welding performance of solder paste and the strength of solder joints. Chemical analysis or spectral analysis is usually used for detection.

4. Particle size detection:

The particle size and distribution of metal particles in solder paste will also affect its performance. Laser particle size analyzer and other equipment can be used for detection.

This method determines the particle size distribution of particles by measuring the scattering or diffraction of metal particles on laser. Generally, the particle size distribution of metal particles is required to be concentrated within a certain range, and the proportion of particles that are too large or too small should not be too high.

What is the most common solder paste?

The most common solder paste is rosin solder paste.

‌Rosin solder paste is widely used because of its excellent flux and protective effect, as well as the protective film formed after welding, which has a protective effect on solder joints. Even if cleaning is not required, there will be no corrosion.

In addition, rosin is easy to mix with other ingredients, which can play a role in adjusting viscosity, so that the metal powder in the solder paste is not easy to precipitate and stratify. These characteristics make rosin solder paste the most common type of solder paste.

What are the advantages of solder paste inspection?

Solder paste inspection has many advantages, as follows:

1. Ensure product quality:

  • Discover problems in advance: By inspecting solder paste before welding, you can find quality problems of the solder paste itself in time, such as uneven composition, inappropriate metal particle size, insufficient flux activity, etc., to ensure the welding quality of electronic products from the source.
  • Optimize welding process: By testing the viscosity, thixotropy and other performance indicators of solder paste, you can determine whether the solder paste is suitable for the current printing process and welding equipment.

2. Improve production efficiency:

  • Reduce rework of defective products: Testing solder paste can quickly screen out solder paste that does not meet quality requirements and avoid using these solder pastes in production, thereby reducing defective products caused by solder paste quality problems.
  • Easy to control the production process: In large-scale production, you can regularly test the solder paste, monitor the quality changes of the solder paste in real time, and detect abnormal conditions in the production process in time.

3. Reduce production costs:

  • Avoid material waste: By testing the solder paste, you can avoid using problematic solder paste, reduce material waste and unnecessary production costs.
  • Extend equipment life: Good quality solder paste can reduce wear and corrosion on printing equipment and welding equipment, and reduce equipment maintenance costs and replacement frequency.

4. Meet industry standards and customer requirements:

  • Meet industry specifications: The electronics industry has strict standards and specifications for welding quality, such as IPC standards. Conducting solder paste inspection can ensure that the quality of solder paste meets the requirements of these standards and specifications and improve the competitiveness of enterprises.
  • Meet customer needs: In the production process of electronic products, customers usually have clear requirements for welding quality. Through solder paste inspection, improve customer trust and satisfaction with the company and enhance the market competitiveness of the company.

What are the defects of solder paste inspection?

Although solder paste inspection is a key step, it is not without challenges. Some common defects found during SPI include:

  • Insufficient solder paste: If too little solder paste is used, it will result in fragile joints or poor electrical connections.
  • Too much solder paste: Too much solder paste can cause bridging between components, causing short circuits.
How does solder paste inspection work?
  • Misalignment: If the solder paste is not applied accurately, it may not align with the pads on the PCB, causing problems when placing components.
  • Collapse: In some cases, solder paste may spread too much after application, resulting in poor joint formation.
  • Solder balls: Small, unwanted solder balls may form around the pad, which may cause electrical shorts.

Do you need flux when using solder paste?

Additional flux is usually not required when using solder paste.

Solder paste itself contains flux ingredients. Solder paste is a paste-like substance made by evenly mixing solder alloy powder and flux. The role of flux in solder paste mainly includes removing oxides on the soldering surface, reducing the surface tension of solder, and promoting solder wetting and diffusion.

During the soldering process, the flux in the solder paste will work at the appropriate temperature to help achieve good soldering results. However, in some special cases, such as soldering some special materials or when there are extremely high requirements for soldering quality, additional flux may be considered, but this is a relatively special application scenario.

What is a solder paste inspection machine?

Solder Paste Inspection (SPI) is a device used to detect solder paste printed on a printed circuit board (PCB).

How does solder paste inspection work?

The main functions include:

1. Solder paste height measurement

  • Use laser scanning, optical imaging and other technologies to accurately measure the height of solder paste on the PCB pad.

2. Solder paste area measurement

  • Determine the coverage area of ​​solder paste on the pad. If the solder paste area is too small, a good solder connection may not be guaranteed; if the area is too large, it may overflow the pad, affecting the subsequent assembly process.

3. Volume measurement

  • Calculate the volume of solder paste based on height and area data. Accurate volume measurement helps ensure consistent solder paste volume for each solder joint, thereby improving the stability of soldering quality.

4. Defect detection

  • Misprint detection: Detect whether there is solder paste misprint on the PCB pad.
  • Offset detection: Detect whether the solder paste printing position is offset from the designed pad position.
  • Shape anomaly detection: Identify whether the shape of the solder paste is abnormal, such as irregular shape, unclear edges, etc. Shape anomalies may be due to problems in the printing process, which will affect the welding quality.

Solder paste inspection machines can detect solder paste quality problems in the printed circuit board production process in a timely manner, improve production efficiency and product quality, and reduce rework and scrap caused by poor soldering.

What is the best temperature for solder paste?

The optimal temperature range for solder paste is 150℃~180℃‌, and the time to maintain this temperature range should be 60~120 seconds to ensure that the solder paste can fully infiltrate the pads and component pins.

This temperature and time range is critical to controlling the quality of reflow soldering, as it involves the effective volatilization of flux and the full infiltration of pads, thereby ensuring the reliability and quality of soldering‌.

Conclusion:

Solder paste inspection is a key step in modern electronic manufacturing to ensure that solder paste is correctly and evenly applied to PCBs. By using advanced SPI machines, defects can be detected early, process control can be improved, and costs can be reduced. Whether using leaded or lead-free solder paste, ensuring the correct amount, alignment, and temperature is critical to forming strong and reliable solder joints.

BEST Technology has a professional solder paste inspection machine. Each PCB board must undergo rigorous testing. Choosing BEST Technology, you will get the highest quality PCB board.

You may also like