pcb
Home > Blog

Posts Tagged ‘pcb design’

PCB trace width and spacing Design Guide
Friday, October 18th, 2024

Trace width refers to the width of the conductive line on the PCB. If the line width is too narrow, the current passing through the unit area is too large, which will cause the wire temperature to rise and may damage the circuit board. Spacing refers to the distance between adjacent conductive lines on the PCB. Sufficient spacing can ensure the electrical insulation performance between adjacent lines and prevent short circuits between lines.

What is PCB trace/line spacing?

PCB trace/line spacing refers to the minimum distance between two lines on the PCB board. This distance is usually used to avoid electrical interference and ensure the reliability of the circuit. The size of the line spacing will affect the crosstalk, electromagnetic compatibility and heat dissipation performance of the circuit.

PCB trace width and spacing Design Guide

The basic concept and importance of line spacing is that it directly affects the performance and reliability of the circuit. The size of the line spacing needs to ensure that the electrical coupling and interference between the circuits are minimized to ensure the normal operation of the circuit.

What are the rules for PCB trace spacing?

The basic rule for PCB trace spacing is that the distance from the center of the line to the center of the line should be greater than or equal to 3 times the line width (3W rule) to ensure that crosstalk between lines is reduced.

  • ‌3W rule‌: In order to minimize the interference between lines, the distance from the center of the line to the center of the line should be greater than or equal to 3 times the line width (3W rule), which can reduce 70% of the electric field interference. If you need to achieve a higher interference reduction effect, you can use 10 times the line width (10W rule), which can reduce 95% of the interference.
  • ‌Electrical safety spacing‌: According to the production capacity of the PCB manufacturer, the spacing between the wires and between the wires and the pads shall not be less than 4mil. Usually, the conventional spacing is set to about 10mil to ensure production quality and electrical safety.
  • ‌Special signal lines‌: For signal lines that need to control impedance, such as RF signals, important single-ended signals, and differential signals, the line width and line spacing should be determined according to the stacking calculation to ensure stable signal transmission.
  • ‌Other considerations‌: In PCB design, it is also necessary to pay attention to the signal lines to avoid using right angles and sharp angles. Using arcs or 135° obtuse angles can reduce reflections and standing waves.

What is the minimum line spacing in PCB?

The minimum line spacing in PCB is usually 4mil. ‌ This spacing is to avoid electrical interference and ensure the reliability of the circuit. The specific line spacing requirements depend on factors such as design specifications, application environment, and manufacturing process. ‌

PCB trace width and spacing Design Guide

In some high-precision applications, a smaller spacing may be required, but in general, the spacing should not be less than 4mil. The common spacing in conventional design is 10mil, which can ensure better production efficiency and circuit stability. ‌

What is the minimum line width for a PCB? ​

The minimum line width of a PCB is usually 6mil (about 0.153mm). This is because in high-density and high-precision PCB design, the line width needs to reach this value to ensure production quality and reliability. ‌

The minimum line width may vary under different design requirements. The minimum line width that can be supported may reach 3.5mil (about 0.09mm) or less, but in most common designs, the line width will be greater than this value to ensure production yield and reliability. ‌ In high-density and high-precision PCB design, the line width may be thinner. ‌

PCB trace width and spacing Design Guide

When designing a PCB, the choice of line width needs to consider the needs of signal transmission. Generally speaking, the larger the line width, the better the factory production and the higher the yield. The line width in conventional design is usually 10mil (about 0.254mm), which can meet most application scenarios. In high-speed signal transmission, the line width needs to be greater than 10mil to reduce signal loss and synchronization problems.

What is the minimum hole spacing for PCB?

The minimum hole spacing of PCB is generally 0.1mm to 0.15mm. This range is applicable to standard 6-layer PCB circuit boards, but the specific value may vary depending on the manufacturing process and design requirements.

Under different manufacturing processes, the specific value of the minimum hole spacing is different. The minimum aperture of mechanical drilling is 0.15mm, while the minimum aperture of laser drilling can reach 0.075mm. In addition, the spacing from the pad to the outline is generally 0.2mm, and the single side of the pad cannot be less than 4mil (about 0.1mm), preferably greater than 6mil (about 0.15mm). For non-metallic holes and slots, the minimum spacing is not less than 1.6mm, and the slot hole is not less than 2.0mm from the edge of the board of the outline.

Factors that affect the minimum hole spacing of PCB include manufacturing process, design requirements and drilling detection. The advancement of manufacturing process has continuously improved the accuracy of PCB boards, and the minimum hole diameter and spacing have been continuously reduced. For example, the accuracy of modern PCB boards has developed to a minimum hole diameter of 0.08 mm and a minimum hole spacing of 0.1 mm or even higher. In addition, drilling detection is also an important link to ensure the quality of PCBs, including through holes, part holes, slot holes and special-shaped holes, which all need to be strictly inspected.

Why is PCB trace spacing design so important?

PCB trace spacing design is very important because it is directly related to the reliability, performance and safety of the circuit board. By reasonably designing the trace spacing, electrical interference can be avoided, signal transmission quality can be guaranteed, and the thermal stability and reliability of the circuit board can be improved, thereby ensuring the normal operation and long-term stable operation of the circuit board.

PCB trace width and spacing Design Guide

First, the design of trace spacing can prevent electrical interference. When two traces are parallel and close to each other, parasitic capacitance and inductance will be generated between them, resulting in signal interference and attenuation. Increasing the trace spacing can reduce this coupling effect, thereby ensuring stable signal transmission.

Second, appropriate trace spacing helps to improve the thermal stability of the circuit board. Components and traces with large working current will generate heat when working. If the traces are too dense, heat is easy to accumulate, resulting in local temperature rise, which may cause failure.

In addition, the design of trace spacing also needs to consider the requirements of production process. Smaller line width and line spacing have higher requirements for production process, which may increase production difficulty and cost.

What will happen if the PCB trace spacing is insufficient?

Insufficient PCB trace spacing will lead to problems such as signal attenuation, signal delay, crosstalk interference and layout difficulties. These problems will affect the performance and stability of the circuit and may even cause circuit function failure.

First, signal attenuation is a major problem of insufficient spacing. Signals will be attenuated during transmission. Too small spacing will increase the possibility of signal attenuation, resulting in signal distortion and increased noise, especially in high-frequency signals and fast signal transmission.

Second, signal delay is also a problem caused by insufficient spacing. It takes time for signals to propagate in the circuit. Too small spacing will extend the path of signal propagation, thereby increasing signal delay and affecting the real-time performance of the system.

In addition, crosstalk interference is another important issue. Insufficient spacing will increase the electromagnetic interaction between signal lines, leading to crosstalk interference, thereby introducing errors or interference and affecting the stability of the circuit.

Finally, layout difficulties are also a practical problem caused by insufficient spacing. When laying out the PCB, too small spacing will increase the complexity of the layout, making it difficult for designers to reasonably arrange the signal path, the distribution of power and ground lines, and the layout of components.

Does trace spacing affect PCB production cost?

The setting of trace spacing is directly related to the difficulty and cost of PCB production process. Although smaller line width and spacing can improve the performance of the circuit, it will increase the difficulty and cost of production.

The setting principles of trace spacing include:

The default values ​​of line width and spacing are usually 6mil, but they can be adjusted according to design requirements. The minimum line width recommended value is 10mil, and the maximum line width can be set to 200mil.

The setting of trace spacing needs to take into account electrical safety and signal integrity. It is usually required that the line center spacing is not less than 3 times the line width to ensure that the electric field does not interfere with each other.

In the design of high-speed signal lines, using larger spacing can further reduce crosstalk and improve the stability of the circuit, but it will also increase costs.

Factors that affect the cost of PCB production also include:

  • ‌Number of wiring layers‌: The more layers, the higher the price.
  • ‌Via size‌: Vias smaller than 0.25mm usually require additional fees, and back drilling will increase the cost by about 10%~20%.
  • ‌Plate selection‌: Unconventional materials such as high-frequency plates and halogen-free plates will increase procurement cycles and production costs.

In summary, the setting of trace spacing has a significant impact on the cost of PCB production. Reasonable settings can control costs while ensuring performance.

In short, PCB line width and spacing are very important parameters in electronic circuit design. They directly affect the performance, reliability and manufacturing feasibility of the circuit board. When designing a circuit board, it is necessary to reasonably select line width and spacing according to the requirements of the circuit and the actual situation.

You may also like

What is an apex regulator pcb?
Tuesday, October 8th, 2024

Apex regulator PCB, as a key electronic component, plays an indispensable role in ensuring power supply stability. In today’s era of high digitalization and electronic equipment dependence, a stable power supply is essential for the normal operation of various devices.

What is a regulator PCB?

Regulator PCB (Printed Circuit Board) is a printed circuit board that integrates regulator-related circuit components. It is centered on regulator components (such as voltage, current or power regulators), supplemented by other circuit components such as capacitors, resistors, and inductors to work together.

What is an apex regulator pcb?

Through specific working principles, such as linear regulators adjust the degree of conduction, switching regulators use high-frequency switching actions and related modulation methods to achieve voltage regulation, current detection and control to achieve current regulation, and power regulation based on voltage and current regulation.

At the same time, it has output stability, can maintain output stability when the input voltage fluctuates and the load changes, and has multiple protection functions such as overvoltage, overcurrent, and overheating. It has the characteristics of flexible design of circuit structure and parameters according to needs, high integration to reduce volume, and easy installation and use.

What are the three types of regulators?

There are three main types of regulators: contact regulators, transistor regulators, and integrated circuit regulators. ‌

  • Contact regulators are an earlier type of regulator, which are characterized by slow contact vibration frequency, mechanical inertia and electromagnetic inertia, resulting in low voltage regulation accuracy, easy sparking of contacts, large radio interference, poor reliability, and short life. They have now been eliminated.
  • Transistor regulators emerged with the development of semiconductor technology. Their advantages include high switching frequency of transistors, no sparking, high regulation accuracy, light weight, small size, long life, high reliability, and low radio wave interference. This type of regulator is now widely used in a variety of mid- and low-end models.
  • In addition to the advantages of transistor regulators, integrated circuit regulators also have the characteristics of ultra-small size. They are usually installed inside the generator (built-in regulators), reducing external wiring and improving cooling effects. This type of regulator is widely used in a variety of car models.

What is an apex regulator pcb?

Apex regulator is an electronic device that regulates the voltage, current or power of a power supply to meet the needs of a specific electronic device or system. And the Apex regulator PCB is the product of combining the Apex regulator with the printed circuit board (PCB) technology.

PCB is a substrate that carries electronic components and provides electrical connections. It is made of insulating material, usually glass fiber reinforced epoxy, covered with a conductive copper foil pattern. Electronic components are mounted on the PCB by soldering or other connection methods to form a complete electronic circuit.

What is an apex regulator pcb?

Apex regulator PCB integrates the Apex regulator onto the PCB, achieving a more compact and efficient power regulation solution. This integrated design not only reduces the space occupied, but also improves the reliability and stability of the circuit.

What is the function of the apex regulator pcb?

  • Receive input voltage: The PCB receives the input voltage from the power supply, which may vary due to a variety of factors. This input voltage is usually higher or lower than the level required by the system components.
  • Regulate voltage: The voltage regulator on the PCB adjusts the input voltage to match the required output level. If the input voltage is too low, the regulator increases it to the appropriate level.
  • Stabilizes output voltage: Once the voltage is regulated, the PCB distributes it to the various components of the electronic system. A feedback control system continuously monitors the output voltage to ensure it remains stable, and makes real-time adjustments as needed to offset any fluctuations in the input voltage.
  • Ensures lifespan: By maintaining a stable voltage supply, the apex regulator PCB helps protect sensitive components from damage caused by voltage surges or voltage drops.

How does a apex regulator circuit work?

The working principle of an APEX regulator PCB is to convert analog signals into digital signals through an ADC conversion circuit so that electronic devices and computers can understand and process them. ‌ This process involves converting analog signals from our real world into digital signals, allowing electronic devices to recognize and process these signals‌.

Specifically, the ADC conversion circuit in the APEX regulator PCB is responsible for converting the input analog signal into a digital signal. The ADC (Analog-to-Digital Converter) circuit is responsible for converting continuously changing analog voltage or current signals into discrete digital signals that can be processed and analyzed by electronic devices.

ADC circuits usually consist of three main parts: sampling, quantization, and encoding. These steps convert analog signals into binary codes that computers can process.

What are the applications for apex regulator pcb?

Apex regulator PCB is mainly used in automation industry, industrial robots, medical inspection, precision testing instruments and other fields. ‌ These application fields have high requirements for accuracy, efficiency and stability, making Apex regulator PCB an ideal choice.

In the automation industry, Apex regulator PCB is widely used in various automation equipment, such as servo system-controlled CNC trademark printing machines, CNC pipe bending machines, etc. These equipment require high-precision speed control and stable output. Apex regulator PCB can provide precise control and reliable performance to meet the needs of automated production.

What is an apex regulator pcb?

In the field of industrial robots, Apex regulator PCB is used to control various actions of the robot to ensure its precise operation in complex environments. Its high torque output and stable accuracy enable the robot to perform well in various industrial applications, improving production efficiency and product quality.

Medical inspection and precision testing instruments also require regulators with high accuracy and stability. The application of Apex regulator PCB in these fields can provide precise control signals to ensure the accuracy and reliability of test results.

Conclusion:

As an indispensable part of electronic equipment, Apex regulator PCB plays an irreplaceable role in ensuring stable operation of equipment and improving equipment performance. With the continuous development of technology, it will continue to develop in the direction of miniaturization, integration, high efficiency, intelligence, etc., and continue to play an important role.

You may also like

Can you use AC in PCB?
Monday, October 7th, 2024

Can you use AC in PCB?AC can be used in PCB boards. PCB boards are designed to support the use of AC, and the functions of AC can be realized through proper circuit design and component selection.

Can you use AC in PCB?

Can you use AC in PCB?

The use of AC in PCB boards requires consideration of the characteristics of AC. The current magnitude and direction of AC change continuously over time, which requires the components and layout on the PCB to adapt to such changes. For example, components such as inductors and capacitors play an important role in AC circuits, and their parameters and layout need to be carefully designed to achieve the desired circuit performance.

Specifically, AC circuit design on PCB boards includes selecting appropriate components, layout, and routing. For example, using test instruments such as LCR digital bridges can measure the parameters of components in AC circuits to ensure that the performance of the circuit meets the design requirements. In addition, reasonable ground routing and layout can reduce signal interference and ensure the stable transmission of AC.

Is the circuit board DC or AC?

Circuit boards can transmit both direct current and alternating current. In modern electronic products, we use alternating current for power supply, so most circuit boards are also designed to transmit alternating current. Of course, in some special application scenarios, some circuit boards also need to transmit direct current. Whether transmitting direct current or alternating current, the circuit board needs to meet the requirements of the transmitted current.

Is the circuit board DC or AC?

What is the PCB in AC?

The alternating current in PCB refers to the current whose direction changes periodically, that is, alternating current (AC). The application of alternating current in PCB is mainly reflected in power conversion and power transmission. PCB power supply usually converts AC into stable direct current (DC) output to meet the demand of electronic equipment for stable power supply. PCB power supply converts AC into the required DC through components such as transformers, rectifiers, filters and voltage regulators, and provides stable power output.

How to calculate the bandwidth of AC in PCB traces

The calculation of AC PCB trace width can be performed by the following formula: W = (I / J) * K, where W represents the trace width, I represents the current, J represents the current density, and K represents a coefficient related to materials and processes. ‌This formula shows that the trace width is related to the current, current density, and material properties‌.

AC in PCB Design Guide

AC in PCB Design Guide

Current Carrying Capacity: The width of a trace directly affects its ability to handle current without exceeding temperature limits or causing excessive voltage drop.
‌Impedance Control: In high-frequency applications, maintaining controlled impedance is critical for signal integrity. Trace width, trace spacing, and dielectric properties affect the characteristic impedance of the transmission line.
‌Heat Dissipation: Adequate trace width helps to effectively dissipate heat, preventing thermal issues such as trace delamination or solder joint failure.
‌Voltage Drop: Narrower traces exhibit higher resistance, resulting in increased voltage drop along the length of the trace. By adjusting the trace width, the voltage drop can be minimized.
‌Manufacturability: The PCB manufacturing process imposes restrictions on the minimum trace width, and designers must balance performance requirements with manufacturability constraints. ‌2.
‌Minimum Trace Width: Most manufacturers have a minimum trace width of 6mil or 0.152mm, and typically use traces of 0.254-0.3mm.
‌Material and Process Deviations: Due to the possibility of material and process deviations in the actual PCB manufacturing process, a certain margin needs to be left when calculating the line width.
‌Signal Integrity Simulation‌: Perform signal integrity simulations to ensure impedance is controlled and signal degradation due to reflections, crosstalk, or transmission line effects is minimized‌

AC in PCB wiring

The current trend is that the power supply voltage is getting lower and lower (especially for highly integrated digital devices), the space occupied is getting smaller and smaller, the weight is getting lighter and lighter, and the efficiency is getting higher and higher, which requires the precise design of the power supply circuit starting from the PCB.

AC in PCB wiring

Safety distance includes electrical clearance (spatial distance), creepage distance (surface distance) and insulation penetration distance…

  1. Electrical clearance: the shortest distance between two adjacent conductors or one conductor and the adjacent motor housing surface measured along the air.
  2. Creepage distance: the shortest distance between two adjacent conductors or one conductor and the adjacent motor housing surface measured along the insulation surface.

Determination of electrical clearance:

The distance can be determined according to the measured working voltage and insulation level

The electrical clearance size requirements of the primary side line are shown in Table 3 and Table 4

The electrical clearance size requirements of the secondary side line are shown in Table 5

But usually: Primary side AC part: L-N ≥ 2.5mm before the fuse, L.N PE (earth) ≥ 2.5mm, no requirements are made after the fuse is installed, but a certain distance should be maintained as much as possible to avoid short circuit damage to the power supply.

Primary side AC to DC part ≥2.0mm

Primary side DC ground to earth ≥2.5mm (primary side floating ground to earth)

Primary side to secondary side ≥4.0mm, components connected between primary and secondary sides

Secondary side gap ≥0.5mm

Secondary side ground to earth ≥1.0mm

Note: Before determining whether it meets the requirements, the internal parts should be applied with a force of 10N and the outer shell with a force of 30N to reduce the distance so that the space distance still meets the requirements under the worst case.

Determination of creepage distance:

Based on the working voltage and insulation level, the creepage distance can be determined by looking up Table 6

But usually: (1), primary side AC part: L-N ≥2.5mm before the fuse, L.N earth ≥2.5mm, no requirement is required after the fuse, but try to keep a certain distance to avoid short circuit damage to the power supply.

(2) Primary side AC to DC part ≥2.0mm

(3) Primary side DC ground to ground ≥4.0mm such as primary side ground to earth

(4) Primary side to secondary side ≥6.4mm, such as optocoupler, Y capacitor and other components, the foot spacing ≤6.4mm needs to be slotted.

(5) Secondary side parts ≥0.5mm

(6) Secondary side ground to earth ≥2.0mm or more

(7) Transformer two-stage ≥8.0mm or more

  1. Insulation penetration distance:

It should meet the following requirements according to the working voltage and insulation application:

  • For working voltage not exceeding 50V (71V AC peak or DC value), there is no thickness requirement;
  • The minimum thickness of additional insulation should be 0.4mm;
  • When the reinforced insulation is not subjected to any mechanical stress that may cause deformation or performance degradation of the insulating material at normal temperature, the minimum thickness of the reinforced insulation should be 0.4mm. If the insulation provided is used in the protective casing of the equipment and will not be bumped or scratched during maintenance by the operator, and any of the following conditions apply, the above requirements do not apply to thin insulating materials regardless of their thickness;
  • For additional insulation, at least two layers of material are used, each of which can pass the dielectric strength test for additional insulation; or:
  • For additional insulation composed of three layers of material, any combination of two layers of material can pass the dielectric strength test for additional insulation; or:
  • For reinforced insulation, at least two layers of material are used, each of which can pass the dielectric strength test for reinforced insulation; or:
  • For reinforced insulation composed of three layers of insulating material, any combination of two layers of material can pass the dielectric strength test for reinforced insulation.
  1. Points to note about wiring process:

Flat components such as capacitors must be flat without glue.

If the distance between two conductors can be shortened by applying a force of 10N, which is less than the safety distance requirement, glue can be used to fix the part to ensure its electrical clearance.

When laying PVC film inside some shell equipment, attention should be paid to ensuring the safety distance (pay attention to the processing technology).

When fixing the parts with glue, be careful not to leave foreign matter such as glue wire on the PCB board.

When processing parts, insulation damage should not be caused.

  1. Requirements for flame-proof materials:

Heat shrink tubing V-1 or VTM-2 or above; PVC tubing V-1 or VTM-2 or above

Teflon tubing V-1 or VTM-2 or above; plastic materials such as silicone sheets, insulating tape V-1 or VTM-2 or above

PCB board 94V-1 or above

  1. Regarding insulation level

(1) Working insulation: insulation required for normal operation of equipment

(2) Basic insulation: insulation that provides basic protection against electric shock

(3) Supplementary insulation: independent insulation applied in addition to basic insulation to protect against electric shock in case of basic insulation failure

(4) Double insulation: insulation consisting of basic insulation plus supplementary insulation

(5) Reinforced insulation: a single insulation structure that provides the same level of protection against electric shock as double insulation under the conditions specified in this standard

The applicable situations of various insulation are as follows:

A. Operational insulation

a. Between parts with different voltages

b. Between ELV circuits (or SELV circuits) and grounded conductive parts.

B. Basic insulation

a. Between parts with dangerous voltages and grounded conductive parts;

b. Between SELV circuits with dangerous voltages and grounding-dependent;

c. Between the primary power conductor and the grounded shield or the core of the main power transformer;

d. As part of double insulation.

C. Supplementary insulation.

a. Generally speaking, between accessible conductive parts and parts that may carry dangerous voltages after basic insulation is damaged, such as:

â… . Between the surface of handles, knobs, handles or similar objects and their ungrounded axis.

â…¡. Between the metal casing of the second category equipment and the outer skin of the power cord passing through this casing.

â…¢. Between the ELV circuit and the ungrounded metal casing.

b. As part of double insulation

D. Double insulation

Double insulation Reinforced insulation

Generally speaking, between the primary circuit and

a. between accessible ungrounded conductive parts, or

b. between floating SELV circuits, or

c. between TNV circuits

Double insulation = basic insulation + supplementary insulation

Note: ELV circuit: extra low voltage circuit

Under normal working conditions, the AC peak value between conductors or between any conductors does not exceed 42.4V or the DC value does not exceed 60V.

SELV circuit: safety extra low voltage circuit.

A properly designed and protected secondary circuit so that under normal conditions or single fault conditions, the voltage between any two accessible parts, and between any accessible parts and the protective grounding terminal of the equipment (only for Class I equipment) will not exceed the safety value.

TNV: communication network voltage circuit

Under normal working conditions, the circuit carrying communication signals

Difference between direct current and alternating current

‌The main differences between DC and AC include direction and polarity, voltage change, current loss, transformer use, and application scenarios.

‌Direction and polarity:

DC: The direction of the current remains unchanged, and the electrons flow from the positive electrode to the negative electrode.

AC: The direction of the current changes periodically, and the electrons flow back and forth between the positive and negative electrodes. ‌
‌Voltage change:

DC: The voltage remains constant and does not change over time.

AC: The voltage magnitude and direction change periodically over time. For example, the mains is an AC with a sine waveform.

‌Current loss:

DC: Fault losses are relatively small.

AC: There is capacitive current, and there is capacitive current in the transmission line. ‌
‌Transformer use:

DC: The voltage cannot be changed using a transformer.

AC: The voltage can be changed using a transformer, which is suitable for boosting voltage to reduce losses during long-distance transportation.

‌Application scenarios:

DC: Suitable for low-voltage electrical appliances and occasions that require stable current.
‌Alternating current‌: Suitable for household and industrial use, using transformers to change voltage to suit different needs.‌

FAQ About AC in PCB

FAQ About AC in PCB

FAQ About AC in PCB

Q: The relationship between PCB current and line width. Is the current divided into AC or DC?
A: The relationship between PCB current and line width is not divided into AC or DC. In terms of the nature of the lines on the PCB, the lines are all made of copper materials, and both AC and DC can pass. However, how much current can pass depends on the cross-sectional area of ​​the line on your PCB. That is, line width x thickness of the copper foil of the line. If the cross-sectional area of ​​the line is small, only small current signals can pass, and if the cross-sectional area is large, large current signals can pass. This signal can be AC ​​or DC.
Not just 1mm, any line width can pass DC or AC signals.

Q: There is a packaged device, and there are 2 pins in the device that need to be connected to the live wire and neutral wire of 220V AC respectively. So how to deal with this power line when drawing the PCB? Are there any size requirements for pads, wires, etc.? Are there any protective measures required? Is it not possible to directly add pads to connect to the pin pads of the device?
A: It is best to mill a groove between the neutral wire and the live wire, and choose the thickness of the wire according to the current. When the current is large, you can put a tin layer on the wire, and the pad should be slightly larger.

Q: The grounding of the PCB circuit board design is also the negative pole. What is the difference between the grounding here and the AC grounding?

A: The concept of the circuit board ground is somewhat different from that of the power supply system. The power supply system refers to the earth, that is, the terminal with the same potential as the earth.

The ground in the circuit board is just a common terminal of a potential, which can be positive or negative, depending on the needs of the designer. It’s just that everyone is used to and assumes that the negative pole is the common terminal, that is, the ground. The circuit board ground is not necessarily connected to the earth.

But it must be connected to the earth when EMI filtering is required.

Q: Should all GNDs on the PCB board be connected? There is a terminal (screw type) with two terminals marked as V1+ and V1- on the PCB schematic. Should V1- be connected to the power supply ground? But I used a multimeter to measure why V3- is not connected to other GNDs on the board?

So how do you connect the ground and 10V of the power supply to the V1+ and V1- ends of the terminal?

A: Not all ground wires on the board are connected together. The ground wires are divided into analog ground and digital ground, just like the ground wire in DC and the ground wire in AC cannot be connected together. That is to say, there is a ground wire that is specifically used for power supply, and there is a ground wire that is specifically used for signals (shielding signal interference). These two ground wires cannot be connected together.
In addition, you mentioned V1+ and V1-, and V1- should not be considered a ground wire. Generally, the signal represented by this method is a differential signal, that is, the V1 signal is differentially divided into V1+ and V1-, which can reduce external interference and transmit farther. Finally, V1+ and V1- are integrated into the V1 signal.
You need to figure out whether the V1+ and V1- of the terminal are used for power supply. If they are used for power supply, then V1+ is the positive pole. V1- is the negative pole. Since you didn’t show us the picture, you can’t just connect it randomly. The circuit board needs to connect not only power but also signals, depending on how your board is made.

You may also like

What is the thermal conductivity of aluminum?
Friday, October 4th, 2024

Aluminum is ubiquitous in all kinds of materials in daily life. The thermal conductivity of aluminum plays a very critical role in the wide application of aluminum materials. Whether it is to help electronic devices dissipate heat or to play the advantages of thermal conduction in fields such as automobiles and buildings, the thermal conductivity of aluminum must be considered.

How good is aluminum at conducting heat?

Aluminum has relatively good thermal conductivity, but its thermal conductivity is not as good as copper. The thermal conductivity of aluminum is about 237 W/m·K, while the thermal conductivity of copper is about 385 W/m·K, which means that under the same conditions, copper can transfer heat more efficiently.

What is the thermal conductivity of aluminum?

The reason why aluminum has good thermal conductivity is that its thermal conductivity is high, and aluminum has a high specific heat capacity. Specific heat capacity refers to the amount of heat that needs to be absorbed or released by a unit mass of a substance to increase or decrease the temperature by 1K. Aluminum’s high specific heat capacity makes it more efficient in absorbing and releasing heat, which is crucial for applications that need to dissipate heat quickly.

What is thermal conductivity?

Thermal conductivity is a physical quantity that represents the ability of a material to conduct heat. The higher the thermal conductivity, the less heat is lost within the material. Thermal conductivity is defined as the amount of heat directly conducted through a material per unit cross-section and length per unit temperature difference and per unit time, and is expressed in Watts per meter Kelvin (W/m-K).

What is the thermal heat conductivity of aluminium?

The thermal conductivity of aluminium is 237W/mK. Thermal conductivity (k) is a measure of the ability of heat to flow through a material.

Thermal conductivity (k) is a measure of the ability of a material to conduct heat, and represents the amount of heat flow through a unit area per unit temperature gradient per unit time. Aluminium, as a common metal material, has a high thermal conductivity and is suitable for applications that require good thermal conductivity.

What is the thermal conductivity of aluminum?

What is the thermal conductivity of aluminium at high temperatures?

The thermal conductivity of aluminium changes as the temperature increases. Generally speaking, as a metal gets hotter, its thermal conductivity decreases slightly. For aluminium, the thermal conductivity decreases as the temperature increases, but it still retains significant thermal conductivity.

As temperatures approach 500°C, the thermal conductivity of aluminum drops to about 160 W/m·K. This drop occurs because increasing temperatures cause increased atomic vibrations within the metal, which interferes with the flow of heat. Despite this drop in thermal conductivity, aluminum still performs well in high-temperature applications, such as engines or high-performance electronics.

What is the weight constant of aluminum?

The weight constant of aluminum is 2.7 g/cm³. Aluminum is a metallic element with a silvery-white appearance and is a lightweight metal.

The density of aluminum can also be expressed as 2.7×10³ kg/m³, which means that there are 2.7×10³ kg per cubic meter of aluminum. 34 In addition, the density of aluminum can also be expressed as 2700 kg/m³, which is another common unit conversion method.

What is the K value of aluminum?

The “K” value is a shorthand term that is often used to refer to the thermal conductivity of a material. The thermal conductivity K value of aluminum is 237 W/mK. Aluminum is a common metal material with a thermal conductivity of 237W/mK in the solid state.

What is the thermal conductivity of aluminum?

Thermal conductivity (thermal conductivity coefficient) is a physical property of a material that indicates the ability of heat to be conducted through a unit area and temperature gradient in a unit time. The greater the thermal conductivity, the better the thermal conductivity of the material. Aluminum, as an excellent thermal conductive material, is widely used in many applications.

What would a high value of K mean thermal conductivity?

A high K value means that the thermal conductivity of the material is high, that is, the material has a strong ability to conduct heat. Thermal conductivity (K value) is an important parameter to measure the rate and ability of a material to conduct heat. Materials with high K values can conduct heat more efficiently and have better thermal conductivity.

What is the thermal conductivity of aluminum?

Specifically, thermal conductivity (K value) is defined as the amount of heat directly conducted by a material of unit cross-section and length under unit temperature difference and unit time. The metric unit is watt/meter Kelvin (W/m·K). If the K value of a material is 1, it means that when the temperature difference between the opposite surfaces is 1 degree, 1 cubic meter of the material will conduct heat at a rate of 1 watt.

Materials with high K values have significant advantages in thermal management. First, they can quickly transfer heat from the heat source to the heat sink, effectively reducing the operating temperature of electronic components, extending the life of the device, and improving system reliability. Second, materials with high K values can significantly reduce the thermal resistance between thermal interfaces and improve the efficiency of heat transfer, especially for high power density devices. Finally, in harsh working environments, materials with high K values can significantly enhance thermal management capabilities, prevent local overheating, and ensure stable system operation.

Is a higher or lower k value better?

Generally speaking, for applications that require effective conduction or heat dissipation, the higher the K value, the better. If the material has a higher K value, it can transfer heat away from hot spots faster, helping to prevent overheating.

In the electronics industry, components can get very hot, so people use materials with high thermal conductivity to make heat sinks. These materials can draw heat away from delicate parts, helping to prevent component damage or failure.

However, in some cases, the lower the thermal conductivity, the better. In insulating materials, you want a lower K value so that heat can’t pass through easily. In these cases, materials such as plastic or fiberglass, which have much lower thermal conductivity than aluminum, are preferred.

Conclusion:

With the continuous advancement of science and technology, the understanding and application of aluminum’s thermal conductivity will continue to expand and deepen. New processing technologies may further optimize aluminum’s thermal conductivity, allowing it to play a unique role in more emerging fields, such as new energy development and high-speed rail transportation.

You may also like

How to convert .brd to .hyp file
Friday, October 4th, 2024

How to convert .brd to .hyp file?You can try to use HyperLynx’s built-in conversion function to directly convert Allegro’s .brd file, but this method may encounter some problems and cause the conversion to fail. ‌

If the built-in conversion function fails, you can try to convert the .brd file to ODB++ format and then import it into HyperLynx. The specific steps are as follows:

  1. Open the PCB file in Allegro, select “File” -> “Export”, and then select ODB++ format for export.
  2. After the export is successful, open HyperLynx, select “File” -> “Open ODB++”, select the exported ODB file, and wait for the import to complete before performing PCB board-level simulation. ‌1.
    If the above method still cannot solve the problem, you can try to add the system variable CDSROOT to solve the conversion failure problem. The specific steps are as follows:
  3. Add the system variable CDSROOT, and the value is the installation path of Cadence Allegro, such as D:\Cadence\Cadence_SPB_17.2-2016\tools\bin.
  4. After confirming, restart the computer and try the conversion operation again‌

How to convert Cadence17.2’s .brd file to HyperLynx9.4.1’s .hyp file

How to convert Cadence17.2’s .brd file to HyperLynx9.4.1’s .hyp file?Recently, I used Hyperlynx to simulate the signal integrity of PCBs, and I needed to convert various PCB formats into .hyp formats. In the process, I found that the PCB drawn by AD can be directly exported in .hyp format, which is very convenient, but the PCB drawn by Cadence cannot be directly exported. I need to use the built-in PCB converter of Hyperlynx to convert the .brd file of Cadence, as shown below:

How to convert Cadence17.2's .brd file to HyperLynx9.4.1's .hyp file
How to convert Cadence17.2's .brd file to HyperLynx9.4.1's .hyp file

But the conversion has always failed. I checked the .ERR file and found a line like this: ERROR: Cadance Allegro utility:extracta, so it is a problem with extracta.exe.


The specific solution is to add the system variable CDSROOT, and the value is D:\Cadence\Cadence_SPB_17.2-2016\tools\bin (the location of your extracta.exe). After confirming, restart the computer and the problem is solved.

Tutorial on converting Cadence17.2’s .brd file to HyperLynx9.4.1’s .hyp file

Tutorial on converting Cadence17.2’s .brd file to HyperLynx9.4.1’s .hyp file?Open the PCB file in Allegro, select ODB++inside in file–>export, select Export as ODBV6, click 1, and then click Accept….

  1. HyperLynx’s built-in conversion function can directly convert Allegro’s .brd file for use, but for some reason the following error always occurs. I didn’t find a solution online, so I had to find another way.
Tutorial on converting Cadence17.2's .brd file to HyperLynx9.4.1's .hyp file
  1. Another way to import PCB into HyperLynx is to convert the file to ODB++inside format. This method requires the installation of the ODB++inside plug-in in advance.
Tutorial on converting Cadence17.2's .brd file to HyperLynx9.4.1's .hyp file
  1. After installing the plug-in, you can convert the .brd file.
  2. First open the PCB file in Allegro, select ODB++inside in file–>export, the following figure appears, select Export as ODBV6, click 1, and then click Accept.
Tutorial on converting Cadence17.2's .brd file to HyperLynx9.4.1's .hyp file

Wait for the conversion to succeed.

  1. This file is the converted file
  2. Open HyperLynx9.4.1, select open ODB++ in file, select the odbjob_v6 folder, and click select folder.
Tutorial on converting Cadence17.2's .brd file to HyperLynx9.4.1's .hyp file
Tutorial on converting Cadence17.2's .brd file to HyperLynx9.4.1's .hyp file

Wait to open.

Tutorial on converting Cadence17.2's .brd file to HyperLynx9.4.1's .hyp file

Click ok. .

Tutorial on converting Cadence17.2's .brd file to HyperLynx9.4.1's .hyp file

What is a .hyp file?

.hyp file is a file used to record key information such as boundary conditions, material properties, solver settings, etc. of the analysis. ‌ This file is usually associated with HyperWorks analysis software and is the basis for numerical calculation and analysis.

 HyperWorks analysis software

The specific uses of .hyp files include:

The specific uses of .hyp files include:

‌Geometry model file‌: represents the geometry of the product or structure.
‌Mesh file‌: shows the process of dividing the model into finite elements.
‌Simulation setting file‌: records the key setting information of the analysis.
‌Result file‌: contains the calculated engineering quantities such as strain, stress, displacement, etc.
‌Post-processing file‌: used to visualize and analyze results in tools such as HyperView.
‌Report document‌: usually in PDF or Word format, recording detailed results and conclusions of the analysis‌1.
In terms of use, for example, in PCB tool software, .hyp files can be created and edited through the BroadSim function, including setting line characteristics, editing stacking information, etc., to simulate and analyze circuit boards‌2. In addition, the Hype software also supports exporting to .hyp format files for further analysis and processing.

You may also like

Board electronics with holes
Friday, October 4th, 2024

Board electronics with holes The types of vias in PCB include through holes, blind holes and buried holes, which have different characteristics and requirements in design and manufacturing. The selection of the appropriate via type should consider the number of PCB layers, wiring density, signal frequency, cost budget and production process. The via design should pay attention to avoid affecting the welding quality, preventing electrical short circuits, and saving costs in high-density packaging.

What are the holes in a PCB called?

What are the holes on PCB called? What are the holes in the circuit? The holes on PCB can be roughly divided into 3 types, screw holes (mounting holes), conductive holes (vias), and plug-in holes.

Screw holes: Screw holes are used for fixing.

Conductive holes: Conductive holes (also called vias) are used for conducting electricity just like circuits.

Plug-in holes: Plug-in holes are of course used to plug in various parts, such as diodes, transistors, capacitors, inductors, etc.

What is a through hole

What is a through hole? Through holes, also known as perforations, are holes in a PCB that go all the way through the board. Their main purpose is to provide electrical connections for component pins while allowing soldering on both sides of the board.

1.A via is a special through hole whose wall is metallized to achieve electrical connection between different layers on a circuit board. This type of hole is usually used to connect component pins to internal circuits, or to achieve electrical connection between different layers in a multi-layer PCB. Vias need to be metallized during the PCB manufacturing process, which usually includes drilling, desmearing, chemical copper plating, and electroplating.

What is a through hole

2.Non-conducting holes are the opposite of through holes. Their hole walls are not metallized, so they do not have electrical connection functions. These holes are mainly used for mechanical fixation, heat dissipation or identification purposes. Non-conducting holes are relatively simple in the PCB manufacturing process, and only drilling operations are required.

What is a through hole

What is a blind via?

A blind via is a hole that extends from one side of a PCB to a certain internal layer without penetrating the entire board. The emergence of blind vias is mainly due to the development of HDI technology, which provides circuit designers with greater flexibility and more compact layout. Blind vias are usually used to connect surface mount components (SMD) to internal circuit layers, or to connect circuits between different internal layers.

What is a blind via?

What are buried vias?

Buried vias are holes located inside the PCB that do not penetrate any side of the board. They are completely hidden inside the board and are used to connect circuits between different internal layers. Buried vias are especially useful in HDI boards because they can reduce the overall thickness of the board while maintaining electrical connections between internal circuits.

What is a microvia?

Microvia refers to a hole with a smaller diameter, usually at the micron level. The emergence of microvia technology enables PCB designers to achieve more complex circuit layouts in a smaller space. Microvias are often used in high-density, high-reliability electronic devices such as mobile phones and tablets. The manufacture of microvias requires high-precision drilling equipment and technology to ensure the accuracy and reliability of the holes.

What is a microvia?

What are Mounting holes?

What are Mounting holes?Locking holes are auxiliary holes used in the PCB manufacturing and assembly process to accurately locate and fix the circuit board. They are usually located at the edge or specific position of the PCB to ensure that the circuit board can be accurately aligned and fixed during manufacturing, testing and assembly. The locating holes do not participate in the connection of the circuit, but are essential to ensure the quality and performance of the circuit board.

What are Mounting holes?

What are Mounting holes?

What are thermal vias?

Thermal vias are holes designed specifically for heat dissipation, usually large and can run through the entire PCB or multiple layers. Their role is to reduce heat buildup on the circuit board by increasing surface area and air flow, thereby improving the stability and reliability of the device. Thermal vias are particularly important in high-performance, high-power electronic devices.

What are thermal vias?

FAQ About board electronics with holes

How to solve the contradiction between manual routing and automatic routing of high-speed signals?

Most of the current powerful routing software’s automatic routing tools have set constraints to control the routing method and the number of vias. The routing engine capabilities and constraint setting items of various EDA companies are sometimes very different. For example, whether there are enough constraints to control the winding method of the serpentine, whether the routing spacing of the differential pair can be controlled, etc. This will affect whether the routing method generated by automatic routing can meet the designer’s ideas. In addition, the difficulty of manually adjusting the routing is also related to the capabilities of the routing engine. For example, the pushing ability of the routing, the pushing ability of the via, and even the pushing ability of the routing pair copper. Therefore, choosing a routing tool with strong routing engine capabilities is the solution.

Will adding test points affect the quality of high-speed signals?

As for whether it will affect the signal quality, it depends on the method of adding test points and how fast the signal is. Basically, the additional test points (not using the existing vias (via or DIP pins) as test points) may be added to the line or a small section of wire may be pulled out from the line. The former is equivalent to adding a very small capacitor to the line, while the latter is an additional branch. Both of these situations will have some impact on high-speed signals, and the extent of the impact is related to the frequency speed of the signal and the edge rate of the signal. The magnitude of the impact can be learned through simulation. In principle, the smaller the test point, the better (of course, it must meet the requirements of the test equipment) and the shorter the branch, the better.

Can you introduce some foreign technical books and data on high-speed PCB design?

Now the application of high-speed digital circuits includes communication networks and calculators and other related fields. In the communication network, the operating frequency of PCB boards has reached around GHz, and the number of layers is as many as 40 layers as far as I know. Due to the advancement of chips, the operating frequency of calculator-related applications, whether it is a general PC or server, has reached 400MHz (such as Rambus) or above. In response to the demand for high-speed and high-density routing, the demand for blind/buried vias, mircrovias and build-up process technology is gradually increasing. These design requirements can be mass-produced by manufacturers.

Does the design of rigid-flexible boards require special design software and specifications? Where can I undertake the processing of such circuit boards in China?

Can I use general PCB design software to design flexible printed circuits (Flexible Printed Circuit). The Gerber format is also used for FPC manufacturers to produce. Since the manufacturing process is different from that of general PCBs, each manufacturer will have its own restrictions on line width, line spacing, and aperture (via) based on their manufacturing capabilities. In addition, some copper foil can be laid at the turning point of the flexible circuit board for reinforcement. As for the manufacturer, you can search for “FPC” as a keyword on the Internet and you should be able to find it.

If the size of the circuit board is fixed, if the design needs to accommodate more functions, it is often necessary to increase the routing density of the PCB, but this may lead to increased mutual interference between the routings, and at the same time, the impedance cannot be reduced if the routing is too thin. Please introduce the techniques in the design of high-speed (>100MHz) high-density PCBs?

When designing high-speed and high-density PCBs, crosstalk interference does need to be paid special attention to because it has a great impact on timing and signal integrity. Here are a few things to note:

Control the continuity and matching of the characteristic impedance of the trace.

The size of the trace spacing. The spacing commonly seen is twice the line width. Through simulation, you can know the impact of trace spacing on timing and signal integrity and find the tolerable spacing. The results of different chip signals may be different.

Choose an appropriate termination method.

Avoid the same routing direction of the upper and lower adjacent layers, or even have traces overlapped up and down, because this kind of crosstalk is greater than the case of adjacent traces on the same layer.

Use blind/buried vias to increase the trace area. However, the production cost of the PCB board will increase. It is indeed difficult to achieve complete parallelism and equal length in actual implementation, but it should be done as much as possible.

In addition, differential termination and common mode termination can be reserved to mitigate the impact on timing and signal integrity.

The RF part, IF part, and even the low-frequency circuit part of the outdoor unit are often deployed on the same PCB. What are the material requirements for such PCB? How to prevent interference between RF, IF, and even low-frequency circuits?

Hybrid circuit design is a big problem. It is difficult to have a perfect solution.

Generally, RF circuits are laid out and wired as an independent single board in the system, and there will even be a special shielding cavity. Moreover, RF circuits are generally single-sided or double-sided boards, and the circuits are relatively simple. All of these are to reduce the impact on the distributed parameters of RF circuits and improve the consistency of RF systems. Compared with general FR4 materials, RF circuit boards tend to use high-Q substrates. The dielectric constant of this material is relatively small, the distributed capacitance of the transmission line is small, the impedance is high, and the signal transmission delay is small. In hybrid circuit design, although RF and digital circuits are made on the same PCB, they are generally divided into RF circuit area and digital circuit area, and laid out and wired separately. Shielding is used between ground vias and shielding boxes.

You may also like

High Frequency PCB Communication Circuits
Friday, October 4th, 2024

Best is mainly engaged in the production of High frequency pcb communication circuits, high-speed, microwave and radio frequency printed circuit boards, mainly in sample making and small and medium batches. The main products are: microwave radio frequency high-frequency boards, Rogers high-frequency boards, Rogers multi-layer high-frequency mixed-pressure boards, Rogers radio frequency boards, Taconic microwave boards, Taconic multi-layer circuit boards, Arlon microstrip antenna boards, ARLON high-frequency boards, F4BM antenna boards, F4BM multi-layer mixed-pressure boards, radio frequency amplifier PCB boards, HDI precision multi-layer boards, serving domestic and foreign high-tech enterprises and scientific research institutions.

‌What is a high frequency pcb communication circuits

High frequency pcb communication circuits to a circuit board with an operating frequency in the high frequency band (usually greater than 300MHz or a wavelength less than 1 meter), which is mainly used to transmit high-frequency signals and data. ‌ This type of circuit board is widely used in radio frequency (RF) and microwave fields, such as communication equipment, radar systems, satellite communications, and high-speed data transmission systems.

high frequency pcb communication circuits

What is a high frequency pcb communication circuits

The characteristics of high-frequency circuits include challenges such as transmission line effects, signal integrity issues, and electromagnetic interference (EMI). Due to the short wavelength of high-frequency signals, traditional low-frequency circuit design methods are no longer applicable, and special design and processing methods are required to ensure the performance and stability of the circuit.

High-frequency circuit boards are produced on microwave substrate copper-clad boards using ordinary rigid circuit board manufacturing methods or special processing methods. They need to have high-quality electrical properties and chemical stability to meet the requirements of high-frequency signal transmission.

Definition of high frequency pcb communication circuits

High-frequency circuit board, as a special circuit board, is mainly suitable for occasions with high electromagnetic frequency, especially in the fields of high frequency (frequency greater than 300MHz or wavelength less than 1 meter) and microwave (frequency greater than 3GHz or wavelength less than 0.1 meter).

It is a circuit board made on a microwave substrate copper-clad board by adopting some manufacturing processes or special processing methods of ordinary rigid circuit boards. Generally speaking, when the frequency of the circuit board reaches above 1GHz, it can be defined as a high-frequency board.

With the rapid development of science and technology, more and more equipment designs have begun to involve microwave frequency bands (>1GHz) and even expanded to the millimeter wave field (such as 77GHz), especially in popular applications such as 77GHz millimeter wave antennas on vehicles.

This trend not only promotes the continuous increase in frequency, but also puts higher requirements on the substrate of the circuit board.

For example, the substrate material needs to have excellent electrical properties, stable chemical properties, and as the frequency of the power signal increases, the loss on the substrate must be extremely small. Therefore, the importance of high-frequency boards is becoming more and more prominent.

Advantages of high frequency pcb communication circuits

The main advantages of high frequency pcb communication circuits include efficient data transmission, strong anti-interference ability, high-frequency bandwidth and high reliability. ‌

  1. high frequency pcb communication circuits can achieve efficient data transmission. High-frequency signals have a short cycle and can transmit more information per unit time, so they have the advantage of large-capacity transmission. In addition, high-frequency signals can achieve fast signal processing and are suitable for application scenarios that require high-speed data transmission and high real-time requirements.
  2. high frequency pcb communication circuits have strong anti-interference capabilities. Due to the short wavelength of high-frequency signals, they can better avoid external interference and attenuation and have strong anti-interference capabilities. This makes high-frequency signals have advantages in fields such as wireless communications and radar systems, and can achieve stable signal transmission and reception. ‌
  3. high frequency pcb communication circuits also have the advantage of high-frequency bandwidth. High-frequency signals correspond to a larger frequency range and can provide higher bandwidth than low-frequency signals. This means that more data can be transmitted, thereby supporting higher data rates and richer media content. ‌
  4. High reliability of high frequency pcb communication circuits is also one of its advantages. The use of high-quality materials and manufacturing processes can effectively resist external interference and oxidation corrosion, ensure stable performance in high temperature environments, and thus extend the service life of the circuit board.

Classification of high frequency pcb communication circuits

Classification by material:

  1. Organic materials: including phenolic resin, glass fiber/epoxy resin, Polyimide, BT/Epoxy (bismaleimide triazine/epoxy resin), etc.
  2. Inorganic materials: mainly including aluminum, copper-invar-copper, ceramic, etc. These materials are mainly selected for their excellent heat dissipation function.

Classification by the hardness of the finished product:

  1. Rigid PCB: has a solid structure and stable performance.
  2. Flexible PCB: has flexibility and bendability, suitable for occasions requiring flexible wiring.
  3. Rigid-Flex PCB: It combines the characteristics of rigid and flexible boards, and has higher design flexibility and wide application.

Classification by structure:

  1. Single-sided board: A circuit board with a conductive layer on only one side.
  2. Double-sided board: Both sides are coated with conductive layers, separated by insulating materials in the middle.
  3. Multilayer board: It is composed of multiple conductive layers and insulating layers, and has higher circuit integration and reliability.

Classification by use:

  1. Communication board: It is used in various communication equipment and systems.
  2. Consumable electronic board: It is commonly found in consumer electronic products.
  3. Military board: A circuit board that meets special requirements in the military field.
  4. Computer board: A circuit board used in computer hardware.
  5. Semiconductor board: A circuit board used in the manufacturing and testing process of semiconductors.
  6. Electrical test board: A circuit board used in electronic testing and measurement equipment.

How to choose high-frequency circuit board high-speed board

When choosing PCB board, you must find a balance between meeting design requirements, mass production and cost. In short, the design requirements cover two aspects: electrical performance and structural reliability. Especially when designing ultra-high-speed PCB (frequency greater than GHz), the choice of board is particularly important. For example, the commonly used FR-4 material will have a significantly increased dielectric loss (Df, i.e., Dielectric Loss) at a frequency of several GHz, and may no longer be applicable.

Taking the 10Gb/S high-speed digital signal as an example, this signal can be regarded as the superposition of multiple sinusoidal wave signals of different frequencies. Therefore, the 10Gb/S signal contains multiple components of different frequencies: such as a 5GHz fundamental signal, a 3rd-order 15GHz signal, a 5th-order 25GHz signal, and a 7th-order 35GHz signal. In order to ensure the integrity of digital signals, maintain the steepness of the upper and lower edges of the signals, and be compatible with the low-loss, low-distortion transmission of RF microwaves (the high-frequency harmonic part of the digital signal reaches the microwave frequency band), the selection of materials for high-speed digital circuit PCBs has many similarities with the needs of RF microwave circuits.

In actual engineering operations, the selection of high-frequency boards seems simple, but the factors that need to be considered are quite complex. Through the introduction of this article, PCB design engineers or high-speed project leaders can have a deeper understanding of the characteristics and selection of boards. Understand the electrical properties, thermal properties, reliability and other characteristics of the board, and use the stacking design reasonably to create products with high reliability and excellent processability, and achieve the best balance of various factors.

Composition and key components of high frequency pcb communication circuits

High frequency pcb communication circuits are basically composed of passive components, active devices and passive networks. Passive components include resistors, capacitors and inductors, which mainly exhibit resistance characteristics at low frequencies, but also exhibit reactance characteristics at high frequencies. Active devices such as high-frequency triodes have the characteristics of high gain, high frequency response and low noise, and are widely used in television, radio communication, radar and other fields.

Application of high frequency pcb communication circuits

High frequency pcb communication circuits are widely used in long-distance communication systems, with a communication distance of up to thousands of kilometers, and are often used to maintain communication between aircraft and bases. It occupies a high-frequency band of 2~30MHz, uses skywave propagation, and can propagate over long distances. Modern airborne high-frequency communication systems usually use single-sideband communication systems, which can greatly compress the occupied frequency band and save transmission power. However, high-frequency communication is also susceptible to electrical interference such as ionospheric disturbances and lightning, generating radio background noise, and there is fading, and the signal is sometimes strong and sometimes weak.

Design Guidelines for High Frequency PCB Communication Circuits

Design Guidelines

High Frequency PCB Communication Circuits

  1. How to avoid high-frequency interference?

The basic idea of ​​avoiding high-frequency interference is to minimize the interference of the electromagnetic field of high-frequency signals, which is the so-called crosstalk. You can increase the distance between high-speed signals and analog signals, or add ground guard/shunt traces next to analog signals. Also pay attention to the noise interference of digital ground to analog ground.

  1. How to solve the signal integrity problem in high-frequency communication PCB design?

Signal integrity is basically an impedance matching problem. The factors that affect impedance matching include the architecture and output impedance of the signal source, the characteristic impedance of the trace, the characteristics of the load end, and the topology of the trace. The solution is to rely on termination and adjust the topology of the trace.

  1. How is the differential wiring method implemented?

There are two points to note when wiring differential pairs. One is that the length of the two lines should be as equal as possible, and the other is that the spacing between the two lines (this spacing is determined by the differential impedance) should remain unchanged, that is, they should be kept parallel. There are two parallel methods, one is that two lines run on the same routing layer (side-by-side), and the other is that two lines run on two adjacent layers (over-under). Generally, the former side-by-side (side by side, shoulder to shoulder) is more commonly used.

  1. How to implement differential routing for clock signal lines with only one output end?

To use differential routing, it must be meaningful if both the signal source and the receiving end are differential signals. Therefore, differential routing cannot be used for clock signals with only one output end.

  1. Can a matching resistor be added between the differential line pairs at the receiving end?

The matching resistor between the differential line pairs at the receiving end is usually added, and its value should be equal to the value of the differential impedance. This will improve the signal quality.

  1. Why should the routing of differential pairs be close and parallel?

The routing method of differential pairs should be appropriately close and parallel. The so-called appropriate proximity is because this spacing will affect the value of differential impedance, which is an important parameter for designing differential pairs. Parallelism is also required because the consistency of differential impedance must be maintained. If the two lines are sometimes far away and sometimes close, the differential impedance will be inconsistent, which will affect the signal integrity and timing delay.

  1. How to deal with some theoretical conflicts in actual wiring?

Basically, it is right to separate the analog/digital ground. It should be noted that the signal routing should try not to cross the split place (moat), and the return current path of the power supply and signal should not be too large.

The crystal oscillator is an analog positive feedback oscillation circuit. To have a stable oscillation signal, the loop gain and phase specifications must be met. The oscillation specification of this analog signal is easily interfered. Even if ground guard traces are added, it may not be possible to completely isolate the interference. Moreover, if it is too far away, the noise on the ground plane will also affect the positive feedback oscillation circuit. Therefore, the distance between the crystal oscillator and the chip must be as close as possible.

It is true that there are many conflicts between high-speed wiring and EMI requirements. But the basic principle is that the resistors, capacitors or ferrite beads added due to EMI cannot cause some electrical characteristics of the signal to not meet the specifications. Therefore, first use the techniques of arranging routing and PCB stacking to solve or reduce EMI problems, such as routing high-speed signals on the inner layer. Only then use resistors, capacitors or ferrite beads to reduce damage to the signal.

  1. How to solve the contradiction between manual routing and automatic routing of high-speed signals?

Most of the current powerful routing software’s automatic routing tools have set constraints to control the winding method and the number of vias. The winding engine capabilities and constraint setting items of various EDA companies are sometimes very different. For example, whether there are enough constraints to control the winding method of the serpentine, whether the routing spacing of the differential pair can be controlled, etc. This will affect whether the routing method generated by automatic routing can meet the designer’s ideas. In addition, the difficulty of manually adjusting the routing is also related to the ability of the winding engine. For example, the pushing ability of the routing, the pushing ability of the via, and even the pushing ability of the routing to the copper plating, etc. Therefore, choosing a routing tool with a strong winding engine capability is the solution.

  1. About test coupon.

The test coupon is used to measure the characteristic impedance of the produced PCB board with TDR (Time Domain Reflectometer) to see if it meets the design requirements. Generally, the impedance to be controlled is single line and differential pair. Therefore, the trace width and line spacing (when there is a differential pair) on the test coupon should be the same as the line to be controlled. The location of the ground point during measurement is important. In order to reduce the inductance of the ground lead, the grounding point of the TDR probe is usually very close to the probe tip, so the distance and method between the point where the signal is measured on the test coupon and the ground point should be consistent with the probe used.

  1. In high-speed PCB design, the blank area of ​​the signal layer can be copper-plated, and how should the copper of multiple signal layers be distributed in grounding and power supply?

Generally, the copper plating in the blank area is mostly grounded. However, when plating copper next to high-speed signal lines, pay attention to the distance between the copper plating and the signal line, because the copper plating will reduce the characteristic impedance of the trace a little. Also be careful not to affect the characteristic impedance of other layers, such as in the dual strip line structure.

  1. Can the signal line on the power plane be calculated using the microstrip line model? Can the signal between the power and ground planes be calculated using the stripline model?

Yes, both the power plane and the ground plane must be considered as reference planes when calculating the characteristic impedance. For example, a four-layer board: top layer-power layer-ground layer-bottom layer. At this time, the model of the characteristic impedance of the top layer routing is a microstrip line model with the power plane as the reference plane.

  1. Can the automatic generation of test points on high-density printed circuit boards by software generally meet the test requirements of mass production?

Whether the test points automatically generated by general software meet the test requirements depends on whether the specifications for adding test points meet the requirements of the test equipment. In addition, if the routing is too dense and the specifications for adding test points are strict, it may not be possible to automatically add test points to each line. Of course, the places to be tested need to be filled manually.

  1. Will adding test points affect the quality of high-speed signals?

As for whether it will affect the signal quality, it depends on the way of adding test points and how fast the signal is. Basically, the additional test point (without using the existing via or DIP pin as the test point) may be added to the line or a short line may be pulled out from the line. The former is equivalent to adding a very small capacitor to the line, and the latter is an additional branch. Both situations will have some impact on the high-speed signal, and the degree of impact is related to the frequency speed of the signal and the edge rate of the signal. The magnitude of the impact can be known through simulation. In principle, the smaller the test point, the better (of course, it must meet the requirements of the test equipment) and the shorter the branch, the better.

  1. How should the ground wires between the boards of a system be connected when several PCBs are connected to each other?

When the signals or power supplies between the PCB boards are in operation, for example, when the power supply or signal from board A is sent to board B, there will be an equal amount of current flowing back from the ground layer to board A (this is Kirchoff current law). The current on the ground layer will flow back to the impedance. Therefore, at each interface where the power supply or signal is connected to each other, the number of pins allocated to the ground layer should not be too small to reduce the impedance, so as to reduce the noise on the ground layer. In addition, the entire current loop can be analyzed, especially the part with larger current, and the connection method of the ground layer or ground wire can be adjusted to control the flow of current (for example, create low impedance at a certain place to let most of the current flow through this place) to reduce the impact on other more sensitive signals.

You may also like

What is an alumina circuit board?
Friday, September 27th, 2024

What is an alumina circuit board? As a unique circuit board material, it is emerging in the electronics field with its excellent performance and advantages. It uses alumina as the main material, bringing new opportunities for performance improvement and miniaturization of various electronic devices.

What is an alumina circuit board?

Alumina circuit board is a circuit board that uses alumina ceramic as a substrate. This circuit board has excellent electrical insulation properties, high thermal conductivity, excellent soft solderability and high adhesion strength. It can be etched with various graphics like a PCB board and has a large current carrying capacity.

What is an alumina circuit board?

Alumina ceramic circuit board is an ultra-thin composite substrate made by bonding copper foil directly to the surface (single or double sides) of an alumina (Al2O3) ceramic substrate at high temperature through a special process.

Alumina ceramic circuit boards are widely used in electronic devices that require high performance and high reliability, such as solar applications, voltage regulators, amplifier circuits, and memory modules.

Alumina ceramic substrates are mainly composed of white amorphous powder, commonly known as alumina or simply Al2O3. It has excellent properties, such as high wear resistance, acid and alkali corrosion resistance, excellent performance at high temperatures (1600-1700 degrees Celsius), etc.

What types of alumina circuit boards are there?

Ordinary alumina ceramics are classified according to their Al2O3 content, including 99%, 96%, etc. 99% alumina has high purity, white or ivory color, and is widely used in various applications, including lamps, electronic devices, and wear-resistant components. 96% alumina is widely used in various electronic applications while providing good thermal conductivity and insulation properties.

‌96% alumina‌:

  • Suitable for thick film circuit substrates, with excellent electrical insulation properties, mechanical strength, good thermal conductivity, chemical durability and dimensional stability.
  • Its surface roughness is generally 0.2~0.6μm, and the maximum operating temperature of the substrate can reach 1600℃.
  • 96% alumina has become an economical choice for manufacturing hybrid microelectronic circuits due to its availability, low cost and technical quality.

‌99% Alumina‌:

  • Commonly used for most thin-film electronic substrate applications such as sputtering, evaporation, and chemical vapor deposition of metals for circuit generation.
What is an alumina circuit board?
  • 99% Alumina has higher purity, smaller grain size, and the prepared substrate has excellent surface smoothness (surface roughness is generally 0.08~0.1μm), and the maximum use temperature of the substrate can reach 1700℃.
  • It has high mechanical strength, low thermal conductivity, excellent electrical insulation, good dielectric properties, and good corrosion resistance and wear resistance.

What are the advantages of alumina circuit boards?

The advantages of alumina circuit boards are mainly reflected in their physical and chemical properties, which make them widely used in many fields.

  • ‌High hardness‌: The hardness of alumina ceramic plates is very high, second only to diamond and sapphire, and has excellent wear resistance and corrosion resistance.
What is an alumina circuit board?
  • ‌High melting point‌: The melting point of alumina is as high as 2072℃, which means that alumina circuit boards can work for a long time in high temperature environments without being affected and maintain stable performance.
  • ‌Good insulation performance‌: Alumina ceramic boards have good insulation performance and can effectively isolate the conduction of current and heat.
  • ‌Excellent heat dissipation performance‌: In LED lighting and high-power electronic devices, alumina circuit boards are widely used due to their excellent heat dissipation performance.
  • ‌Lightweight‌: Compared with other materials, alumina ceramic boards have a lower density and lighter weight, which can greatly reduce the load of the equipment‌.
  • ‌Chemical stability‌: Alumina is an electrical insulating material with high resistivity, good chemical stability and good corrosion resistance.

What are the disadvantages of alumina circuit boards?

The disadvantages of alumina ceramic PCBs mainly include high cost, fragility, inferior thermal conductivity to other materials, complex manufacturing process and high price. ‌

  • ‌High cost‌: Compared with plastic packaging, alumina ceramic PCBs have higher process temperature requirements, which leads to relatively high costs.
  • ‌Fragile‌: Alumina ceramics are relatively fragile, and compared with aluminum nitride ceramic substrates, alumina ceramics are more fragile.
  • ‌Thermal conductivity is not as good as other materials‌: Although alumina ceramics have certain thermal conductivity, their thermal conductivity is usually between 25W and 50W, while the thermal conductivity of aluminum nitride ceramic substrates can reach 190~260W. In comparison, the thermal conductivity of alumina ceramics is poor‌.
  • ‌Complicated manufacturing process‌: Due to the high hardness of alumina ceramics, mechanical processing is more difficult, which increases the cost of its precision machined parts.
  • ‌Higher price‌: Due to the above factors, the price of alumina ceramic PCBs is usually higher, about 3~10 times that of resin PCB boards‌.

What are the uses of alumina circuit boards?

Alumina circuit boards are widely used and are mainly used in the following aspects:

  • ‌Electronic industry‌: Alumina ceramic circuit boards have become the preferred material in the manufacture of electronic components such as semiconductor devices and integrated circuits due to their excellent insulation properties and high temperature resistance.
  • ‌Optoelectronic industry‌: In the field of optoelectronics, alumina ceramic circuit boards also perform well. Due to their high optical transparency and chemical stability, they are widely used in the manufacture of optoelectronic devices such as lasers and LEDs.
  • ‌Automobile Industry‌: In terms of automobile headlights, the popularity of high-power LED headlights has put forward higher requirements for heat dissipation performance. Alumina ceramic substrates, with their good thermal conductivity, ensure the stable operation of LED light sources and improve lighting effects and service life. ‌
What is an alumina circuit board?
  • ‌Aerospace‌: Alumina ceramic substrates have been widely used in key components such as aerospace devices and satellite communication equipment due to their comprehensive performance advantages. ‌
  • ‌Medical Devices‌: Due to their excellent physical, chemical and mechanical properties, alumina ceramic circuit boards can meet the high requirements of medical devices for materials and ensure the performance and safety of medical devices.

In summary, alumina circuit boards have been widely used in many fields due to their unique physical, chemical and mechanical properties, providing solid support for technological progress and industrial upgrading in all walks of life. ‌

Is alumina a good electrical insulator? ‌

Alumina PCB is a good electrical insulator. ‌

Alumina (Al₂O₃), as a common ceramic material, has good electrical insulation, high temperature resistance and mechanical strength. Its color is usually white or light yellow, its volume density is between 3.7-3.9 g/cm³, its thermal conductivity is as high as 24 W/(m·K) or more, and its bending strength is usually between 300-400 MPa.

In addition, alumina also has a low dielectric constant and breakdown voltage, which makes it particularly suitable for high-frequency circuits and high-voltage circuits.

Therefore, alumina PCB is not only one of the most commonly used ceramic PCBs on the market because of its low price and excellent performance, but also when using alumina PCB, there is no need to add an insulating layer, which further proves its good electrical insulation.

What other ceramic PCB materials are there?

In addition to alumina ceramic PCB materials, it also includes alumina, aluminum nitride, silicon carbide, silicon nitride, zirconium oxide, etc. These materials each have unique properties and are suitable for different application scenarios.

  • Aluminum nitride (AlN): Aluminum nitride is also an excellent ceramic material with extremely high thermal conductivity and low expansion coefficient. It is gray in color and has a volume density between 3.33-3.35 g/cm³. The thermal conductivity of aluminum nitride is as high as 170 W/(m·K), which is several times that of traditional organic materials. The flexural strength can reach about 400-500 MPa, and it also has a low dielectric constant, which is suitable for high-power electronic devices and high-speed digital circuits.
  • ‌Silicon Carbide (SiC): Silicon carbide is a hard material with excellent wear resistance and corrosion resistance. It is gray in color and has a volume density of 3.1-3.15 g/cm³. Silicon carbide has a high thermal conductivity of up to 100 W/(m·K), a flexural strength of more than 450 MPa, and a low dielectric constant and breakdown voltage, which is suitable for power electronic devices in high temperature environments.
  • ‌Silicon Nitride (Si3N4): Silicon nitride is a high-strength, high-toughness ceramic material widely used in the aerospace field. It is gray in color and has a volume density of about 3.22 g/cm³. Silicon nitride has a high thermal conductivity of up to 20 W/(m·K), a flexural strength of generally between 700-1200 MPa, and a low dielectric constant and breakdown voltage, which makes it suitable for electronic components in high temperature and high pressure environments.
  • Zirconium oxide (ZrO2): Zirconium oxide is a high-toughness, high-hardness ceramic material with good chemical stability. It is gray in color and has a volume density of about 6.0 g/cm³. Zirconium oxide has a high thermal conductivity of up to 3 W/(m·K), a flexural strength of about 100-400 MPa, and a low dielectric constant and breakdown voltage, which makes it suitable for electronic components in high temperature and high pressure environments.

In short, alumina ceramic PCBs are increasingly used in the electronic field. It not only provides a solid foundation for the innovative development of electronic equipment, but also opens up a new path for the advancement of future electronic technology. BEST Technology is a professional ceramic circuit board manufacturer with rich manufacturing experience in various ceramic materials, and its product quality has passed relevant quality inspections. Choosing us will get the best quality products!

You may also like

Ceramic PCB board, Low Volume&Customization
Wednesday, September 18th, 2024

In the field of electronics, ceramic circuit boards are quietly opening a new revolution with their unique charm and excellent performance. Ceramic circuit boards are gradually becoming the focus of the electronics industry, leading the industry to a more efficient, stable and advanced technological era.

What is a ceramic pcb board?

ceramic pcb board, also known as ceramic printed circuit board, is a printed circuit board that uses ceramic as a substrate instead of traditional fiberglass or epoxy resin. Compared with traditional substrates, ceramic materials have a variety of advantages, making them ideal for high-performance electronic applications.

Ceramic PCB board, Low Volume&Customization

What are the different types of ceramic PCB?

There are several types of ceramic materials commonly used in PCB boards, including aluminum oxide (Al₂O₃), aluminum nitride (AlN), and beryllium oxide (BeO). Each material has its own unique properties and advantages.

1. Alumina ceramic pcb board

Alumina is the most widely used ceramic material in PCB boards. It has excellent electrical insulation, high thermal conductivity and good mechanical strength. Alumina ceramic pcb boards are suitable for a wide range of applications, including power electronics, LED lighting and automotive electronics.

Ceramic PCB board, Low Volume&Customization

2. Aluminum Nitride ceramic pcb board

Aluminum nitride is a high-performance ceramic material with extremely high thermal conductivity. This makes it ideal for applications where heat dissipation is a key factor, such as high-power LEDs, power modules, and RF/microwave equipment.

3. Beryllium Oxide ceramic pcb board

Beryllium oxide is a highly toxic material, but it has excellent thermal conductivity and electrical insulation. Due to its toxicity, beryllium oxide ceramic pcb boards are only used in special applications where other materials cannot meet the performance requirements.

What is the high temperature ceramic PCB?

High temperature ceramic PCB‌ is a special ceramic circuit board designed for high temperature environments, commonly known as high temperature co-fired ceramic (HTCC) circuits. This circuit board is made by mixing adhesives, lubricants, solvents, plasticizers, and aluminum oxide to make raw ceramics, and then forming circuits.

The main feature of high temperature ceramic PCBs is their high temperature resistance, which allows them to work stably under extreme temperature conditions, making them ideal for applications that require high reliability and long-term stability.

In addition, during the manufacturing process of high-temperature ceramic PCB, the copper foil and the ceramic substrate are bonded together. This bonding method not only has strong bonding strength, but also the copper foil will not fall off, thus ensuring the performance stability in harsh environments such as high temperature and high humidity.

The materials of high-temperature ceramic PCB usually include ceramic materials such as aluminum oxide (Al2O3), beryllium oxide (BeO), aluminum nitride (AlN), silicon carbide (SiC) and boron nitride (BN). These materials are not only very effective in conducting heat, but also good electrical insulators, making high-temperature ceramic PCBs perform well in applications that require high thermal conductivity and excellent electrical properties.

In general, high-temperature ceramic PCB is a high-performance, high-reliability circuit board, especially suitable for applications that require high thermal conductivity, excellent electrical properties, and stable operation in harsh environments, such as aerospace, military electronics, etc.

What are the manufacturing processes involved in ceramic pcb boards?

The manufacturing process of ceramic pcb boards is more complicated than that of traditional PCB boards. It generally involves the following steps:

1. Substrate preparation

Ceramic substrates are prepared by sintering ceramic powder at high temperatures. The sintered substrate is then polished and cleaned to ensure a smooth surface for subsequent steps.

2. Circuit pattern formation

Circuit patterns are formed on ceramic substrates using various methods, such as screen printing, photolithography, or laser ablation. In screen printing, a conductive paste is printed onto the substrate to form a circuit pattern. Photolithography involves the use of a photomask and photoresist to create a circuit pattern. Laser ablation uses a laser to remove unwanted ceramic material to form a circuit pattern.

3. Metallization

After the circuit pattern is formed, the substrate is metallized to provide conductivity. This is usually done by sputtering or electroplating a thin layer of metal, such as copper or gold, onto the substrate.

4. Component mounting

Electronic components are then mounted onto the ceramic pcb board using surface mount technology (SMT) or through-hole technology (THT). SMT involves soldering components directly onto the surface of the PCB board, while THT involves inserting components into holes in the PCB board and soldering them to the bottom surface.

What are the advantages of ceramic pcb boards?

ceramic pcb boards have several advantages over traditional PCB boards, making them ideal for high-performance electronic applications. Some of the main advantages include:

  • 1. High thermal conductivity: Ceramic materials have excellent thermal conductivity, which allows for efficient heat dissipation.
  • 2. High electrical insulation: Ceramic materials have high electrical insulation, which reduces the risk of electrical short circuits and improves the reliability of electronic devices.
  • 3. Good mechanical strength: Ceramic materials have good mechanical strength, making them resistant to vibration and shock.
  • 4. Small size and light weight: ceramic pcb boards can be made very thin and lightweight, making them ideal for portable electronic devices.
  • 5. High-frequency performance: Ceramic materials have low dielectric losses and high frequency stability, making them suitable for high-frequency applications such as RF/microwave equipment.

What is a ceramic PCB used for?

Ceramic PCBs have a wide range of applications, including:

  • 1. Power Electronics: Ceramic PCBs are widely used in power electronics applications such as power modules, inverters, and converters. The high thermal conductivity and electrical insulation of ceramic materials make them ideal for handling high power levels.
Ceramic PCB board, Low Volume&Customization
  • 2. LED Lighting: Ceramic PCBs are used in LED lighting applications due to their excellent heat dissipation properties. The high thermal conductivity of ceramic materials helps to extend the life of LEDs by reducing operating temperatures.
  • 3. Automotive Electronics: Ceramic PCBs are used in automotive electronics applications such as engine control units, power steering systems, and airbag controllers. The high mechanical strength and reliability of ceramic materials make them suitable for use in harsh automotive environments.
  • 4. Aerospace and Defense: Ceramic PCBs are used in aerospace and defense applications due to their high performance and reliability. The small size and light weight of ceramic PCBs make them ideal for satellite and missile systems.
  • 5. Medical Devices: Ceramic PCBs are used in medical devices such as pacemakers, defibrillators, and hearing aids. The high electrical insulation and biocompatibility of ceramic materials make them suitable for use in medical applications.

How is ceramic pcb board developing?

As the electronics industry continues to develop, there is a growing demand for high-performance PCB boards that can meet the growing requirements of advanced electronic devices. ceramic pcb boards are expected to play an important role in meeting this demand. Some future trends in ceramic pcb board technology include:

1. Increased use of high-performance ceramic materials

As the performance requirements of electronic devices continue to increase, there is a growing demand for high-performance ceramic materials such as aluminum nitride and silicon carbide. These materials have higher thermal conductivity and electrical insulation than traditional ceramic materials, making them ideal for next-generation electronic devices.

2. Passive component integration

In order to reduce the size and weight of electronic devices, there is a growing trend to integrate passive components such as resistors, capacitors, and inductors onto PCB boards.

3. 3D printing of ceramic pcb boards

3D printing technology is emerging as a promising method for manufacturing ceramic pcb boards. 3D printing can create complex geometries and structures that are difficult to achieve using traditional manufacturing methods.

4. Development of hybrid PCBs

Hybrid PCBs that combine ceramic and traditional substrates are being developed. Hybrid PCBs can use ceramic substrates for the power section and traditional fiberglass substrates for the signal section.

Ceramic PCBs are a revolutionary technology that offers several advantages over traditional PCBs. As the electronics industry continues to grow, ceramic PCBs are expected to play an increasingly important role in meeting the growing demand for advanced electronic devices.

You may also like

What is a ceramic substrate pcb? What is it used for?
Friday, September 13th, 2024

Ceramic substrate PCB is a printed circuit board with ceramic material as substrate. With its excellent performance and unique technical advantages, it occupies an important position in today’s rapidly developing electronics industry. Its high thermal conductivity, high insulation, high temperature resistance, corrosion resistance and other characteristics enable it to be widely used in many fields.

What is a ceramic substrate?

‌Ceramic substrate is a special process board in which copper foil is directly bonded to the surface (single or double sides) of alumina (Al2O3) or aluminum nitride (AlN) ceramic substrate at high temperature. ‌

What is a ceramic substrate pcb? What is it used for?

This ultra-thin composite substrate has excellent electrical insulation properties, high thermal conductivity, excellent soft solderability and high adhesion strength, and can be etched with various patterns like PCB boards, with great current carrying capacity.

Therefore, ceramic substrate has become the basic material for high-power power electronic circuit structure technology and interconnection technology.

It has a wide range of applications, including but not limited to semiconductor modules, integrated circuits and electronic ceramics, among which alumina is one of the most commonly used ceramic substrate materials.

The characteristics of ceramic substrates include strong mechanical stress, shape stability, high strength, high thermal conductivity, high insulation, strong bonding, corrosion resistance, and good thermal cycling performance, with a cycle number of up to 50,000 times and high reliability.

In addition, the operating temperature range of ceramic substrates is wide, from -55°C to 850°C, and its thermal expansion coefficient is close to that of silicon, which simplifies the production process of power modules.

How thick is a ceramic substrate?

The thickness of ceramic substrates is generally between tens and hundreds of microns. ‌ This material usually has a flat surface for connecting and supporting microelectronic components.

What is a ceramic substrate pcb? What is it used for?

The thickness of ceramic substrates can be precisely processed according to specific needs to meet different application scenarios.

The thickness of alumina ceramic substrates can be adjusted between 0.2-1.5mm, which shows that the thickness range of ceramic substrates is quite wide and can be customized according to specific application needs. ‌

What is a ceramic PCB used for?

Due to its unique performance and functions, ceramic PCB is widely used in many fields, including but not limited to LED lighting, semiconductor coolers, high-power semiconductor modules, power control circuits, electronic heaters, intelligent power devices, power hybrid circuits, high-frequency switching power supplies, automotive electronics, solid-state relays, military electronics, aerospace, communications, etc.

What is a ceramic substrate pcb? What is it used for?

The requirements for electronic products in these application fields are to become thinner, smaller, and have more functions. As a new type of circuit material, ceramic PCB effectively provides a solution for the miniaturization of modern electronic products. Its advantages are:

  • Heat dissipation performance and current carrying capacity‌: The heat dissipation performance, current carrying capacity, insulation, thermal expansion coefficient, etc. of ceramic substrates are better than those of ordinary glass fiber PCB boards, and are particularly suitable for high-power power electronic modules, aerospace, military electronics and other products.
  • Thermal conductivity‌: Ceramic PCB has excellent thermal conductivity and can effectively dissipate the heat generated by components, making it the first choice for applications that generate a lot of heat and require efficient thermal management.
  • ‌Electrical performance‌: The excellent electrical performance of ceramic materials at high frequencies makes ceramic PCBs particularly suitable for radio frequency (RF) and microwave applications, which can maintain signal integrity and minimize signal loss.
  • ‌Durability and mechanical strength‌: Ceramic PCBs have impressive mechanical strength and durability, and can withstand challenging mechanical stress and vibration, while having good chemical resistance and the ability to withstand harsh environments.

In summary, ceramic PCBs occupy an important position in high-performance electronic applications due to their excellent physical and electrical properties, as well as high reliability and stability, and are an important part of the development of modern electronic technology.

What is the difference between ceramic substrate and FR-4?

The main differences between ceramic substrates and FR-4 are their physical and electrical properties, cost, production cycle, application areas, and high-frequency performance. ‌

What is a ceramic substrate pcb? What is it used for?

‌Physical and electrical properties‌:

  • Ceramic substrates use ceramic substrates, such as alumina ceramic substrates, aluminum nitride ceramic substrates, silicon nitride ceramic substrates, etc., with good heat dissipation and insulation, thermal conductivity between 25w and 230w, and insulation resistance greater than or equal to 10 to the 14th power.
  • In contrast, FR-4 is made of glass fiber, which has poor heat dissipation performance and no insulation performance. It needs to add an insulation layer to transfer heat, and its heat dissipation performance is only a few watts.

‌Cost and production cycle‌:

  • The production cost of ceramic substrates is high, and the production cycle is usually 10~15 days.
  • In contrast, the production cost of FR-4 substrates is lower, and the production cycle is shorter. Some can be shipped in 24 hours.

‌Application areas‌:

  • Ceramic substrates are widely used in high thermal conductivity, high current, high insulation, high frequency and other fields due to their high thermal conductivity, excellent insulation, high frequency performance, high temperature resistance and corrosion resistance.
  • FR-4 substrates are more widely used and in high demand due to their low cost and short production cycle.

‌High frequency performance‌:

  • The dielectric constant of ceramic substrates is relatively stable and low, generally around 7~10, with high high frequency performance and low dielectric loss, faster and more stable signal transmission, so it is suitable for high frequency communication.
  • In contrast, the high frequency performance of FR-4 is not as good as that of ceramic substrates.

In summary, there are significant differences between ceramic substrates and FR-4 in terms of physical and electrical properties, cost, production cycle, and application areas.

What is a ceramic substrate for power electronics?

‌The ceramic substrate for power electronics is a special process board made by directly bonding copper foil to the surface (single or double sides) of an alumina (Al2O3) or aluminum nitride (AlN) ceramic substrate at high temperature.

This ultra-thin composite substrate has excellent electrical insulation properties, high thermal conductivity, excellent soft solderability and high adhesion strength, and can be etched with various patterns like a PCB board, with a large current carrying capacity.

Therefore, ceramic substrates have become the basic materials for high-power power electronic circuit structure technology and interconnection technology.

The characteristics of ceramic substrates include strong mechanical stress, stable shape, high strength, high thermal conductivity, high insulation, strong bonding, corrosion resistance, good thermal cycle performance (cycle times up to 50,000 times, high reliability), no pollution, no pollution, wide operating temperature (-55℃~850℃), thermal expansion coefficient close to silicon, and simplified production process of power modules.

These characteristics make ceramic substrates widely used in the field of power electronics, especially in application scenarios that require high heat dissipation, low thermal resistance, long life, and voltage resistance, such as home appliance indicator lights, car lights, street lights, and large outdoor billboards.

In addition, the market for ceramic substrates is expected to increase by 94.27% in the next three years, showing a strong demand for localization. With the improvement of production technology and equipment, product prices have accelerated rationalization, further expanding its application areas in the LED industry.

The development trend of diversification and structural integration of ceramic substrates has put forward higher requirements on the performance of packaging substrates. They have been widely used in electronic device packaging, such as thin film ceramic substrates, thick film printed ceramic substrates, and direct bonding ceramic substrates. These substrates have high thermal conductivity, good heat resistance, low thermal expansion coefficient, high mechanical strength, good insulation, corrosion resistance, and radiation resistance.

Conclusion:

Ceramic substrate PCB has shown great value in the electronics industry with its excellent performance and wide range of uses. With the continuous advancement of science and technology, ceramic substrate PCB will surely be more deeply applied and developed in more fields, contributing to the innovation and progress of electronic technology.

As a professional ceramic circuit board manufacturer, BEST Technology has advanced production technology and a strict quality control system. It is always committed to providing customers with high-quality products and professional services, and continuously promoting the development of the ceramic circuit board industry.

You may also like